Abstract

We discuss experimental studies of the interaction between a nanoscopic object and a photonic crystal membrane resonator of quality factor Q=55000. By controlled actuation of a glass fiber tip in the near field of the photonic crystal, we constructed a complete spatio-spectral map of the resonator mode and its coupling with the fiber tip. On the one hand, our findings demonstrate that scanning probes can profoundly influence the optical characteristics and the near-field images of photonic devices. On the other hand, we show that the introduction of a nanoscopic object provides a low loss method for on-command tuning of a photonic crystal resonator frequency. Our results are in a very good agreement with the predictions of a combined numerical/analytical theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
    [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
    [CrossRef]
  3. V. Sandoghdar, "Trends and developments in scanning near-field optical microscopy," pp. 65-119, Nanometer Scale Science and Technology, (IOS Press, Amsterdam, 2001).
  4. W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
    [CrossRef] [PubMed]
  5. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
    [CrossRef]
  6. I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, "Scanning near-field optical coherent spectroscopy of single molecules at 1.4K," Opt. Lett. 32, 1420-1422 (2007).
    [CrossRef] [PubMed]
  7. K. Vahala, "Optical Microcavities," Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  9. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  10. R. Herrmann, T. Suenner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
    [CrossRef] [PubMed]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
    [CrossRef]
  12. C. M. Soukoulis, ed., Photonic band gap materials, (Kluwer, Dordrecht, 1996).
  13. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
  14. V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, "Scanning near-field optical studies of photonic devices," Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
  15. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
    [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
    [CrossRef]
  17. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M¨uller, U. G¨osele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29, 174-176 (2004).
    [CrossRef] [PubMed]
  18. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
    [CrossRef]
  19. R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
    [CrossRef]
  20. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gerard, and F. de Fornel, "Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity," Opt. Lett. 31, 2160-2162, (2006).
    [CrossRef] [PubMed]
  21. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
    [CrossRef] [PubMed]
  22. I. Märki, M. Salt, and H.-P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).
    [CrossRef] [PubMed]
  23. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, "Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006).
    [CrossRef] [PubMed]
  24. L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, "Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity," Phys. Rev. B 76, 041102(R) (2007).
    [CrossRef]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  26. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  27. E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
    [CrossRef]
  28. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
    [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. -3rd ed. (Artech House, Norwood, MA, 2005).
  30. S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
    [CrossRef]
  31. Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
    [CrossRef]
  32. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
    [CrossRef]
  33. M. Barth and O. Benson, "Manipulation of dielectric particles using photonic crystal cavities," Appl. Phys. Lett. 89, 253114 (2006).
    [CrossRef]

2007 (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, "Scanning near-field optical coherent spectroscopy of single molecules at 1.4K," Opt. Lett. 32, 1420-1422 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (3)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M¨uller, U. G¨osele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

2003 (6)

Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

K. Vahala, "Optical Microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

2002 (1)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

2000 (2)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
[CrossRef]

1994 (1)

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

1984 (2)

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Agio, M.

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Ambrose, W. P.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

Appelbaum, I.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
[CrossRef]

Arentoft, J.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Barth, M.

M. Barth and O. Benson, "Manipulation of dielectric particles using photonic crystal cavities," Appl. Phys. Lett. 89, 253114 (2006).
[CrossRef]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Benisty, H.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Benson, O.

M. Barth and O. Benson, "Manipulation of dielectric particles using photonic crystal cavities," Appl. Phys. Lett. 89, 253114 (2006).
[CrossRef]

Birner, A.

Bogaerts, W.

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Buchler, B. C.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Buchler, B.C.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Bushev, P.

Callard, S.

Cassette, S.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Combrié, S.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

de Fornel, F.

de Ridder, R. M.

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
[CrossRef]

DeRossi, A.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Erni, D.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Fan, S.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
[CrossRef]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Forchel, A.

G¨osele, U.

Garcia-Parajo, M. F.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Gerard, D.

Gerhardt, I.

Gersen, H.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Goodwin, P. M.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

Harbers, R.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Hein, T.

Hermann, C.

Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
[CrossRef]

Herrmann, R.

Herzig, H.-P.

Hess, O.

Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
[CrossRef]

Hollink, A. J. F.

Hopman, W. C. L.

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Jäckel, H.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Joannopoulos, J. D.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
[CrossRef]

Kafesaki, M.

Kamp, M.

Keller, R. A.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Klaedtke, A.

Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
[CrossRef]

Koenderink, A. F.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Korterik, J. P.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

Kramper, P.

Kristensen, M.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Kuipers, L.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Löffler, A.

Loncar, M.

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Louvion, N.

M¨uller, F.

Märki, I.

Martin, J. C.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

Mlynek, J.

Murray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Nagle, J.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Novotny, L.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
[CrossRef]

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Rahmani, A.

Robin, F.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Salt, M.

Sandoghdar, V.

I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, "Scanning near-field optical coherent spectroscopy of single molecules at 1.4K," Opt. Lett. 32, 1420-1422 (2007).
[CrossRef] [PubMed]

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M¨uller, U. G¨osele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29, 174-176 (2004).
[CrossRef] [PubMed]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Søndergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Soukoulis, C. M.

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Strasser, P.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Subramaniam, V.

Suenner, T.

Talneau, A.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Tran, N.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Vahala, K.

K. Vahala, "Optical Microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

van der Werf, K. O.

van Hulst, N. F.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

Veerman, J. A.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Wehrspohn, R. B.

Weidner, E.

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Wrigge, G.

Wüest, R.

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Zumofen, G.

Appl. Phys. Lett. (7)

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984).
[CrossRef]

R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

M. Barth and O. Benson, "Manipulation of dielectric particles using photonic crystal cavities," Appl. Phys. Lett. 89, 253114 (2006).
[CrossRef]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
[CrossRef]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nat. Photonics (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

K. Vahala, "Optical Microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000).
[CrossRef]

Phys. Status Solidi A (1)

Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003).
[CrossRef]

Science (3)

W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984).
[CrossRef]

Other (6)

V. Sandoghdar, "Trends and developments in scanning near-field optical microscopy," pp. 65-119, Nanometer Scale Science and Technology, (IOS Press, Amsterdam, 2001).

C. M. Soukoulis, ed., Photonic band gap materials, (Kluwer, Dordrecht, 1996).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).

V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, "Scanning near-field optical studies of photonic devices," Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).

L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, "Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity," Phys. Rev. B 76, 041102(R) (2007).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. -3rd ed. (Artech House, Norwood, MA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the heterostructure. The yellow lines mark regions with different lattice constants. a 1=410 nm, a 2=400 nm. (b) Schematics of the experimental arrangement. (c) The unperturbed cavity resonance as measured in the far field. The red curve is a Lorentzian fit to the measured data (black circles). (d) The calculated (FDTD) intensity distribution on resonance in the region marked by the white rectangle in Fig. (a).

Fig. 2.
Fig. 2.

Tiles A through M represent SNOM images of the intensity distribution in the PC structure at different wavelengths indicated in each image. Each image is normalized independently according to the color scale shown.

Fig. 3.
Fig. 3.

Calculated intensity distribution at different wavelengths, based on 3D FDTD simulations supplemented with first-order perturbation calculations to take into account the impact of the fiber tip. At each wavelength, the structure is resonant with the incident laser for selected locations of the tip. The calculation only considered the cavity mode without the waveguide mode. Each image is normalized independently according to the color scale shown.

Fig. 4.
Fig. 4.

a) The peak wavelengths of the detuned cavity resonance as a function of tip location. b) Four examples of the local resonance spectra measured through the SNOM tip at the indicated locations A-D in part (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ω = α eff 2 E 0 ( r ) 2 ε ( r ) E 0 2 d r exp ( z p d )

Metrics