Abstract

Extraordinary optical transmission spectrum for a two-dimensional metallic hole array (2D-MHA) changes with the hole channel shape. In this paper a new converging-diverging channel (CDC) shape is proposed. A three-dimensional (3D) finite element method is utilized to analyze the transmission characteristics of the 2D-MHA with CDC. The transmission peaks are blue-shifted when the gap at the throat of CDC is reduced. Similar blue-shift in the transmission peaks are observed for a straight channel MHA when the aperture size is reduced. The transmission for the straight channel MHA is not sensitive to the metal film thickness. But, for a CDC MHA the transmission varies with the metal film thickness. Also, the CDC shape gives an extra degree of geometrical variable to 2D-MHA for tuning the transmission peak location with potential applications in nanolithography, imaging and biosensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 351, 667, 1998.
    [CrossRef]
  2. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  3. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
    [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39 (2007).
    [CrossRef]
  5. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896 (2004).
    [CrossRef] [PubMed]
  6. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664 (2004).
    [CrossRef] [PubMed]
  7. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742 (2004).
    [CrossRef]
  8. J. O’Hara, R. D. Averitt, and A. J. Taylor, "Terahertz surface plasmon polariton coupling on metallic gratings," Opt. Express 12, 6397 (2004).
    [CrossRef] [PubMed]
  9. A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
    [CrossRef]
  10. J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003).
    [CrossRef]
  11. C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, "Optimization of enhanced terahertz transmission through arrays of subwavelength apertures," Phys. Rev. B 69, 205314 (2004).
    [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847 (2004).
    [CrossRef] [PubMed]
  13. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa and E. Sano "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210 (2005).
    [CrossRef] [PubMed]
  14. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  15. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  16. J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
    [CrossRef]
  17. X. L. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320 (2003).
    [CrossRef] [PubMed]
  18. Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, "Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method," Appl. Phys. Lett. 85, 654 (2004).
    [CrossRef]
  19. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  20. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  21. Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang and Y-y Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
    [CrossRef]
  22. K. Nishio and H. Masuda, "Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium," Electrochem. Solid-State Lett. 7, H27 (2004).
    [CrossRef]
  23. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani and M. Hangyo, "Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal," Opt. Express 13, 3921 (2005).
    [CrossRef] [PubMed]
  24. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327 (2002).
    [CrossRef]
  25. A. Z. Azad, and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945 (2005).
    [CrossRef] [PubMed]
  26. D. Korobkin, Y. A. Urzhumov, B. NeunerIII, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, "Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions," Appl. Phys. A,  88, 605 (2007).
    [CrossRef]
  27. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express,  14, 5664 (2006).
    [CrossRef] [PubMed]
  28. H. Daninthe, S. Foteinopoulou, C. M. Soukoulis, "Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials," Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
    [CrossRef]
  29. A. Battula, and S. C. Chen, "Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels," Appl. Phys. Lett. 89, 131113 (2006).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).
  32. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234 (2004).
    [CrossRef] [PubMed]
  33. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 (1944).
    [CrossRef]
  34. C. J. Bouwkamp, "On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes," Philips Res. Rep. 5, 401 (1950).
  35. K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316 (2004).
    [CrossRef]

2007

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39 (2007).
[CrossRef]

D. Korobkin, Y. A. Urzhumov, B. NeunerIII, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, "Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions," Appl. Phys. A,  88, 605 (2007).
[CrossRef]

2006

H. Daninthe, S. Foteinopoulou, C. M. Soukoulis, "Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials," Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[CrossRef]

A. Battula, and S. C. Chen, "Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels," Appl. Phys. Lett. 89, 131113 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express,  14, 5664 (2006).
[CrossRef] [PubMed]

2005

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa and E. Sano "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210 (2005).
[CrossRef] [PubMed]

C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani and M. Hangyo, "Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal," Opt. Express 13, 3921 (2005).
[CrossRef] [PubMed]

A. Z. Azad, and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang and Y-y Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

2004

C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, "Optimization of enhanced terahertz transmission through arrays of subwavelength apertures," Phys. Rev. B 69, 205314 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, "Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method," Appl. Phys. Lett. 85, 654 (2004).
[CrossRef]

K. Nishio and H. Masuda, "Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium," Electrochem. Solid-State Lett. 7, H27 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316 (2004).
[CrossRef]

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234 (2004).
[CrossRef] [PubMed]

D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896 (2004).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664 (2004).
[CrossRef] [PubMed]

J. O’Hara, R. D. Averitt, and A. J. Taylor, "Terahertz surface plasmon polariton coupling on metallic gratings," Opt. Express 12, 6397 (2004).
[CrossRef] [PubMed]

2003

X. L. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320 (2003).
[CrossRef] [PubMed]

J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003).
[CrossRef]

2002

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327 (2002).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 351, 667, 1998.
[CrossRef]

1950

C. J. Bouwkamp, "On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes," Philips Res. Rep. 5, 401 (1950).

1944

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Appl. Phys. A

D. Korobkin, Y. A. Urzhumov, B. NeunerIII, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, "Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions," Appl. Phys. A,  88, 605 (2007).
[CrossRef]

Appl. Phys. Lett.

A. Battula, and S. C. Chen, "Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels," Appl. Phys. Lett. 89, 131113 (2006).
[CrossRef]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316 (2004).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, "Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method," Appl. Phys. Lett. 85, 654 (2004).
[CrossRef]

Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang and Y-y Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327 (2002).
[CrossRef]

Electrochem. Solid-State Lett.

K. Nishio and H. Masuda, "Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium," Electrochem. Solid-State Lett. 7, H27 (2004).
[CrossRef]

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 351, 667, 1998.
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Philips Res. Rep.

C. J. Bouwkamp, "On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes," Philips Res. Rep. 5, 401 (1950).

Photonics Nanostruct. Fundam. Appl.

H. Daninthe, S. Foteinopoulou, C. M. Soukoulis, "Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials," Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[CrossRef]

Phys. Rev.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B

J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003).
[CrossRef]

C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, "Optimization of enhanced terahertz transmission through arrays of subwavelength apertures," Phys. Rev. B 69, 205314 (2004).
[CrossRef]

Phys. Rev. Lett.

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847 (2004).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic view of silver metallic hole array having periodicity ‘d’ with converging-diverging channels (CDC), (b) cross-sectional view of the CDC shape with aperture (A), thickness (t), slope or angle (θ) of CDC shape and gap at the throat (g).

Fig. 2.
Fig. 2.

(a). Transmission spectrum for a silver metallic hole array with a straight channel shape having period ‘d’ = 19 μm, thickness ‘t’ = 2 μm and different aperture sizes ‘A’, (b) Transmission spectrum for silver metallic hole array with converging-diverging channel having period ‘d’ = 19 μm, thickness ‘t’ = 2 μm, aperture ‘A’ = 10 μm and different gaps at the throat ‘g’.

Fig. 3.
Fig. 3.

Transmittance at wavelength ‘A’ = 20 μm for silver metallic hole array with converging-diverging channel having period ‘d’ = 19 μm, thickness ‘t’ = 2 μm, different aperture sizes ‘A’ and varying gaps at the throat ‘g’.

Fig. 4.
Fig. 4.

Transmittance spectrum of silver metallic hole array with period ‘d’ = 19 μm, thickness ‘t’ = 2 μm for varying aperture sizes ‘A’ and hole channel shapes as (a) straight, (b) CDC shape with angle ‘θ’ = 50°, (c) CDC shape with angle ‘θ’ = 65°, and (d) CDC shape with angle ‘θ’ = 72°.

Metrics