Abstract

We demonstrate the cost-effective and facile method of fabricating close-packed microlens arrays using photoinduced two-dimensional (2-D) surface relief structures as original templates. 2-D surface relief structures are produced by successive inscription of two beams interference patterns with different grating vectors on azopolymer films. The employed exposure dose of 1st inscription stage and 2nd inscription stage are optimized to obtain symmetrical modulation heights. These photoinduced 2-D surface relief structures on azopolymer films are used directly to mold PDMS, and PDMS molds were then transferred onto photopolymer to imprint microlens arrays. Using this method, tetragonally and hexagonally close-packed microlens arrays are successfully fabricated in rapid and cost-effective way.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
    [CrossRef]
  2. S. Möller, and S. R. J. Forrest, "Visual Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  3. M. Nathan, "Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode," Appl. Phys. Lett. 85, 2688-2690 (2004).
    [CrossRef]
  4. K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Opt. Commun. 174, 7-12 (2000).
    [CrossRef]
  5. B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356 (1998).
    [CrossRef] [PubMed]
  6. E. M. Vogel, M. H. Grabow, and S. W. Martin, "Role of silica densification in the performance of optical connectors," J. Non-Cryst. Solids 204, 95-98 (1996).
    [CrossRef]
  7. E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, "Fabrication of microvessels and microlenses from polymers by solvent droplets," Appl. Phys. Lett. 85, 124101-124103 (2005).
    [CrossRef]
  8. M.-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
    [CrossRef]
  9. S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98-103 (2003).
    [CrossRef]
  10. Q. Peng, Y. Guo, and S. Liu, "Real-time gray-scale photolithography for fabrication of continuous microstructure," Opt. Lett. 27, 1720-1722 (2002).
    [CrossRef]
  11. A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825-1828 (2002).
    [CrossRef]
  12. Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
    [CrossRef]
  13. J.-Y. Huang, Y.-S. Lu, J. A. Yeh, "Self-assembled high NA microlens arrays using global dielectricphoretic energy wells," Opt. Express. 14, 10779-10784 (2006).
    [CrossRef] [PubMed]
  14. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]
  15. H.J. Nam, D.-Y. Jung, G.-R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363 (2006).
    [CrossRef] [PubMed]
  16. H. Wu, T. W. Odom, and G. M. Whitesides, "Generation of chrome masks with micrometer-scale features using microlens lithography," Adv. Mater. 14, 1213-1216 (2002).
    [CrossRef]
  17. X.-C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102-1-3 (2005).
  18. P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Appl. Phys. Lett. 66, 136-138 (1995).
    [CrossRef]
  19. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
    [CrossRef]
  20. A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chem. Rev. 102, 4139-4175 (2002).
    [CrossRef] [PubMed]
  21. N. Zettsu, and T. Seki, "Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers," Macromolecules 37, 8692-8698 (2004).
    [CrossRef]
  22. P. Karageorgiev, B. Stiller, D. Prescher, B. Dietzel, B. Schulz, and L. Brehmer, "Modification of the surface potential of azobenzene-containing langmuir-blodgett films in the near field of a scanning Kevin microscope tip by irradiation," Langmuir 16, 5515-5518 (2000).
    [CrossRef]
  23. G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch, M. Zharnikov, M. Mayor, M. A. Rampi, and P. Samori, "Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers," Proc. Natl. Acad. Sci. USA 104, 9937-9942 (2007).
    [CrossRef] [PubMed]
  24. N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li, and J. Kumar, "Surface relief structures on azo polymer films," J. Mater. Chem. 9, 1941-1955 (1999).
    [CrossRef]
  25. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056619 1-6 (2007).
  26. M. J. Escuti, and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
    [CrossRef]
  27. S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, "Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films," J. Mater. Chem. 16, 370-375 (2006).
    [CrossRef]
  28. X. Wang, J. Kumar, S. K. Tripathy, L. Li, J.-I. Chen, S. Marturunkakul, "Epoxy-based nonlinear optical polymers from post azo coupling reaction," Macromolecules 30, 219-225 (1997).
    [CrossRef]

2007 (1)

G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch, M. Zharnikov, M. Mayor, M. A. Rampi, and P. Samori, "Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers," Proc. Natl. Acad. Sci. USA 104, 9937-9942 (2007).
[CrossRef] [PubMed]

2006 (3)

J.-Y. Huang, Y.-S. Lu, J. A. Yeh, "Self-assembled high NA microlens arrays using global dielectricphoretic energy wells," Opt. Express. 14, 10779-10784 (2006).
[CrossRef] [PubMed]

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, "Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films," J. Mater. Chem. 16, 370-375 (2006).
[CrossRef]

H.J. Nam, D.-Y. Jung, G.-R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, "Fabrication of microvessels and microlenses from polymers by solvent droplets," Appl. Phys. Lett. 85, 124101-124103 (2005).
[CrossRef]

2004 (3)

M. Nathan, "Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode," Appl. Phys. Lett. 85, 2688-2690 (2004).
[CrossRef]

N. Zettsu, and T. Seki, "Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers," Macromolecules 37, 8692-8698 (2004).
[CrossRef]

M. J. Escuti, and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
[CrossRef]

2003 (2)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98-103 (2003).
[CrossRef]

2002 (6)

Q. Peng, Y. Guo, and S. Liu, "Real-time gray-scale photolithography for fabrication of continuous microstructure," Opt. Lett. 27, 1720-1722 (2002).
[CrossRef]

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825-1828 (2002).
[CrossRef]

H. Wu, T. W. Odom, and G. M. Whitesides, "Generation of chrome masks with micrometer-scale features using microlens lithography," Adv. Mater. 14, 1213-1216 (2002).
[CrossRef]

M.-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

S. Möller, and S. R. J. Forrest, "Visual Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chem. Rev. 102, 4139-4175 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

2000 (3)

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Opt. Commun. 174, 7-12 (2000).
[CrossRef]

P. Karageorgiev, B. Stiller, D. Prescher, B. Dietzel, B. Schulz, and L. Brehmer, "Modification of the surface potential of azobenzene-containing langmuir-blodgett films in the near field of a scanning Kevin microscope tip by irradiation," Langmuir 16, 5515-5518 (2000).
[CrossRef]

1999 (1)

N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li, and J. Kumar, "Surface relief structures on azo polymer films," J. Mater. Chem. 9, 1941-1955 (1999).
[CrossRef]

1998 (1)

1997 (1)

X. Wang, J. Kumar, S. K. Tripathy, L. Li, J.-I. Chen, S. Marturunkakul, "Epoxy-based nonlinear optical polymers from post azo coupling reaction," Macromolecules 30, 219-225 (1997).
[CrossRef]

1996 (1)

E. M. Vogel, M. H. Grabow, and S. W. Martin, "Role of silica densification in the performance of optical connectors," J. Non-Cryst. Solids 204, 95-98 (1996).
[CrossRef]

1995 (2)

P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Appl. Phys. Lett. 66, 136-138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Adv. Mater. (2)

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

H. Wu, T. W. Odom, and G. M. Whitesides, "Generation of chrome masks with micrometer-scale features using microlens lithography," Adv. Mater. 14, 1213-1216 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Appl. Phys. Lett. 66, 136-138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

M. Nathan, "Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode," Appl. Phys. Lett. 85, 2688-2690 (2004).
[CrossRef]

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, "Fabrication of microvessels and microlenses from polymers by solvent droplets," Appl. Phys. Lett. 85, 124101-124103 (2005).
[CrossRef]

Chem. Rev. (1)

A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chem. Rev. 102, 4139-4175 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Möller, and S. R. J. Forrest, "Visual Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

J. Mater. Chem. (2)

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, "Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films," J. Mater. Chem. 16, 370-375 (2006).
[CrossRef]

N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li, and J. Kumar, "Surface relief structures on azo polymer films," J. Mater. Chem. 9, 1941-1955 (1999).
[CrossRef]

J. Micromech. Microeng. (1)

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98-103 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

E. M. Vogel, M. H. Grabow, and S. W. Martin, "Role of silica densification in the performance of optical connectors," J. Non-Cryst. Solids 204, 95-98 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825-1828 (2002).
[CrossRef]

Langmuir (3)

P. Karageorgiev, B. Stiller, D. Prescher, B. Dietzel, B. Schulz, and L. Brehmer, "Modification of the surface potential of azobenzene-containing langmuir-blodgett films in the near field of a scanning Kevin microscope tip by irradiation," Langmuir 16, 5515-5518 (2000).
[CrossRef]

H.J. Nam, D.-Y. Jung, G.-R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363 (2006).
[CrossRef] [PubMed]

M.-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Macromolecules (2)

X. Wang, J. Kumar, S. K. Tripathy, L. Li, J.-I. Chen, S. Marturunkakul, "Epoxy-based nonlinear optical polymers from post azo coupling reaction," Macromolecules 30, 219-225 (1997).
[CrossRef]

N. Zettsu, and T. Seki, "Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers," Macromolecules 37, 8692-8698 (2004).
[CrossRef]

Opt. Commun. (1)

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Opt. Commun. 174, 7-12 (2000).
[CrossRef]

Opt. Eng. (1)

M. J. Escuti, and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

J.-Y. Huang, Y.-S. Lu, J. A. Yeh, "Self-assembled high NA microlens arrays using global dielectricphoretic energy wells," Opt. Express. 14, 10779-10784 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch, M. Zharnikov, M. Mayor, M. A. Rampi, and P. Samori, "Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers," Proc. Natl. Acad. Sci. USA 104, 9937-9942 (2007).
[CrossRef] [PubMed]

Other (2)

X.-C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102-1-3 (2005).

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056619 1-6 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic illustration of optical setup employed for holographic inscription. PBS polarization beam splitter, HW - half-waveplate, QW - quarter wave plate.

Fig. 2.
Fig. 2.

(a). Tetragonal 2-D surface relief structures. (b) Hexagonal 2-D surface relief structures. Bold arrows indicate the grating vectors of two holographic inscription stages. (c) Influence of ratio of 1st inscription stages exposure dose to 2nd inscription stages exposure dose on symmetry of modulation heights. Symmetry of modulation heights is defined as the ratio of 1st gratings modulation height to 2nd gratings modulation height.

Fig. 3.
Fig. 3.

3-D AFM images of pristine close-packed microlens arrays on azopolymer films: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays.

Fig. 4.
Fig. 4.

Schematic illustration of procedures for fabricating close-packed microlens arrays by soft-imprint lithography employing photoinduced 2-D surface relief structures as templates microlens arrays.

Fig. 5.
Fig. 5.

3-D AFM images of PDMS molds of templates microlens arrays on azopolymer films: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays.

Fig. 6.
Fig. 6.

3-D AFM images of fabricated close-packed microlens arrays: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays.

Fig. 7.
Fig. 7.

SEM images of fabricated close-packed microlens arrays: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays. The scale bar is 10 μm.

Fig. 8.
Fig. 8.

Line-profile of fabricated close-packed microlens arrays in vertical direction: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays.

Fig. 9.
Fig. 9.

Optical micrographs of the two types of close-packed microlens arrays taken at different focal planes: (a) At the focal plane. (b) At the out of focal plane. Scale bar is 5 μm.

Fig. 10.
Fig. 10.

Focal spot distribution: (a) Tetragonal microlens arrays. (b) Hexagonal microlens arrays. Scale bar is 5 μm.

Metrics