Abstract

We demonstrate, for the first time, a mid infrared silicon Raman amplifier. Amplification of 12 dB is reported for a signal at 3.39 micron wavelength. The active medium was a 2.5 cm long silicon sample that was pumped with 5ns pulses at 2.88 micron. Such a technology can potentially extend silicon photonics’ application beyond data communication in the near IR and into the mid-IR world of remote sensing, biochemical detection and laser medicine. Challenges faced in the mid-IR regime such as a higher free carrier scattering rate and longer lifetimes in mid-IR waveguides are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  2. H.  Rong, R. Jones, A.  Liu, O.  Cohen, D. Hak, A.  Fang and M.  Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725 - 728 (2005).
    [CrossRef] [PubMed]
  3. V. Raghunathan, O. Boyraz and B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," CLEO 2005, Baltimore, MD, May 2005, CMU1.
  4. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12,4261-4268, (2004).
    [CrossRef] [PubMed]
  5. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
    [CrossRef]
  6. R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A 8, 840-848 (2006).
    [CrossRef]
  7. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
    [CrossRef]
  8. V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared Silicon Raman laser," Phys. Status Solidi. (A) 203, R38-R40 (2006).
    [CrossRef]
  9. I. T. Sorokina and K. L. Vodpyanov, Solid state mid infrared laser sources, (Springer Topics in Applied Physics, 2003).
    [CrossRef]
  10. A. Kier, ed., Mid infrared semiconductor optoelectronics, (Springer series in Optoelectronics, 2006).
    [CrossRef]
  11. L. Meyers and W. Bosenberg, "Periodically-poled lithium niobate and quasi-phase matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
    [CrossRef]
  12. A. Zajac, M. Skorczakowski, Jacek Swiderski, and P. Nyga, "Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications," Opt. Express 12, 5125-5130 (2004).
    [CrossRef] [PubMed]
  13. T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov "Stimulated Raman Scattering in Mid IR spectral range 2.31-2.75-3.7μm in BaWO4 crystal under 1.9 and 1.56μm pumping," Laser Phys. Lett. 3,17-20 (2005).
    [CrossRef]
  14. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56, (2003).
    [CrossRef]
  15. V. Raghunathan, H. Renner, R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 13, 3396-3408 (2007).
    [CrossRef]
  16. A. Yariv, Quantum Electronics, 3rd ed., (John Wiley and Sons, New York, 1988).
  17. D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of Raman effect in silicon-on-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
    [CrossRef] [PubMed]
  18. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman scattering in Silicon waveguides," Opt. Express 11, 1731-1739 (2003).
    [CrossRef] [PubMed]
  19. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  20. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004).
    [CrossRef] [PubMed]
  21. A. E. Siegman, "How to (may be) measure laser beam quality," Tutorial OSA Annual Meeting (1997).
  22. N. Bloembergen, "Laser induced Electric breakdown in solids," IEEE J. Quantum Electron. 10, 375-386 (1974).
    [CrossRef]
  23. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
    [CrossRef]

2007 (1)

V. Raghunathan, H. Renner, R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 13, 3396-3408 (2007).
[CrossRef]

2006 (3)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A 8, 840-848 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared Silicon Raman laser," Phys. Status Solidi. (A) 203, R38-R40 (2006).
[CrossRef]

2005 (3)

H.  Rong, R. Jones, A.  Liu, O.  Cohen, D. Hak, A.  Fang and M.  Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725 - 728 (2005).
[CrossRef] [PubMed]

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov "Stimulated Raman Scattering in Mid IR spectral range 2.31-2.75-3.7μm in BaWO4 crystal under 1.9 and 1.56μm pumping," Laser Phys. Lett. 3,17-20 (2005).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

2004 (5)

2003 (3)

1998 (1)

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

1997 (1)

L. Meyers and W. Bosenberg, "Periodically-poled lithium niobate and quasi-phase matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
[CrossRef]

1974 (1)

N. Bloembergen, "Laser induced Electric breakdown in solids," IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

Appl. Phys. Lett. (2)

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Bloembergen, "Laser induced Electric breakdown in solids," IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

L. Meyers and W. Bosenberg, "Periodically-poled lithium niobate and quasi-phase matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
[CrossRef]

J. Opt. A (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A 8, 840-848 (2006).
[CrossRef]

Laser Phys. Lett. (1)

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov "Stimulated Raman Scattering in Mid IR spectral range 2.31-2.75-3.7μm in BaWO4 crystal under 1.9 and 1.56μm pumping," Laser Phys. Lett. 3,17-20 (2005).
[CrossRef]

Nature (1)

H.  Rong, R. Jones, A.  Liu, O.  Cohen, D. Hak, A.  Fang and M.  Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725 - 728 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Phys. Status Solidi. (A) (1)

V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared Silicon Raman laser," Phys. Status Solidi. (A) 203, R38-R40 (2006).
[CrossRef]

Prog. Quantum Electron. (1)

H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56, (2003).
[CrossRef]

Other (5)

I. T. Sorokina and K. L. Vodpyanov, Solid state mid infrared laser sources, (Springer Topics in Applied Physics, 2003).
[CrossRef]

A. Kier, ed., Mid infrared semiconductor optoelectronics, (Springer series in Optoelectronics, 2006).
[CrossRef]

A. E. Siegman, "How to (may be) measure laser beam quality," Tutorial OSA Annual Meeting (1997).

A. Yariv, Quantum Electronics, 3rd ed., (John Wiley and Sons, New York, 1988).

V. Raghunathan, O. Boyraz and B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," CLEO 2005, Baltimore, MD, May 2005, CMU1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission in silicon as a function of optical intensity. Two different pump sources at 2.09μm and 2.936μm were used in these experiments. The enhanced nonlinear losses at 2.09μm due to TPA and FCA and the absence of these losses at 2.936μm are clearly seen (figure reproduced from Ref. [8]).

Fig. 2.
Fig. 2.

The experimental set-up used to observe Raman amplification in silicon at MWIR wavelengths. The pulsed pump OPO (2.88microns) and the CW Stokes HeNe laser (3.39microns) are focused and coupled into 2.5cm long AR-coated silicon sample with suitable CaF2 plano-convex (PCX) lenses. At the output end, dichroic filters are used to block the residual pump and look at the amplified stokes using a fast InSb detector placed after a spectrometer.

Fig. 3.
Fig. 3.

The time-resolved Raman amplification plot as observed using an oscilloscope. The typical Raman gain (on-off) obtained was ~12dB. The measurement was performed using a slow detector (~25nsec) when compared to the pump pulse (~5nsec) and hence the gain is underestimated due to smoothening of the trace. Trailing edge looks smoothened due to averaging. Averages of 64 traces were taken for this measurement.

Fig. 4.
Fig. 4.

The plot of on-off Raman gain as a function of effective pump intensity interacting with the Stokes input. Each point is obtained by averaging 64 times. Maximum gain of 12dB is obtained at ~217MW/cm2 pump intensity. A line is shown on this curve as a guide to the eye. The saturation seen in the curve is believed to be due to silicon damage.

Fig. 5.
Fig. 5.

The plot of various time resolved Raman gain traces shown at increasing pump intensities. The drop in the dc level of the Stokes signal with increasing pump intensity is believed to be due damage of the silicon sample which increases the linear absorption of the sample.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P i ( 3 ) ( ω S ) = ε o χ ijkl ( 3 ) E j ( ω S ) E k ( ω p ) E l ( ω p )
g R = 3 ω S μ o n S n p χ ijkl ( 3 ) = 6 π μ o λ S n S n P χ ijkl ( 3 )
α FCA = 1.45 × 10 17 ( λ 1.55 ) 2 ΔN = σ . ΔN
Δ N = ( β 2 I p 2 + 2 β 2 I p I S ) τ eff ( 2 hv )

Metrics