Abstract

In this work we demonstrate an integrated microfluidic/photonic architecture for performing dynamic optofluidic trapping and transport of particles in the evanescent field of solid core waveguides. Our architecture consists of SU-8 polymer waveguides combined with soft lithography defined poly(dimethylsiloxane) (PDMS) microfluidic channels. The forces exerted by the evanescent field result in both the attraction of particles to the waveguide surface and propulsion in the direction of optical propagation both perpendicular and opposite to the direction of pressure-driven flow. Velocities as high as 28 μm/s were achieved for 3 μm diameter polystyrene spheres with an estimated 53.5 mW of guided optical power at the trapping location. The particle-size dependence of the optical forces in such devices is also characterized.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech. 36, 381-411 (2004).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. K. C. Neuman and Steven Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [CrossRef]
  5. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
    [CrossRef] [PubMed]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  7. R. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, and D. Marr, "Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars," Opt. Express 12, 4390-4398 (2004).
    [CrossRef] [PubMed]
  8. F. Merenda, J. Rohner, J. -M. Fournier, and R.-P. Salathé, "Miniaturized high-NA focusing-mirror multiple optical tweezers," Opt. Express 15, 6075-6086 (2007).
    [CrossRef] [PubMed]
  9. F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
    [CrossRef] [PubMed]
  10. F. V. Ignatovich and L. Novotny, "Experimental study of nanoparticle detection by optical gradient forces," Rev. Sci. Instrum. 74, 5231-5235 (2003).
    [CrossRef]
  11. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, "Optical manipulation of objects and biological cells in microfluidic devices," Biomed. Microdevices 5, 61-67 (2003).
    [CrossRef]
  12. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
    [CrossRef] [PubMed]
  13. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Lett. 4, 1415-1419 (2004).
    [CrossRef]
  14. S. Cran-McGreehin, T. F. Krauss and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
    [CrossRef] [PubMed]
  15. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995).
    [CrossRef]
  16. M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999).
    [CrossRef]
  17. H. Y. Jaising and O. G. Hellesø, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005).
    [CrossRef]
  18. A. Rahmani and P. C. Chaumet, "Optical trapping near a photonic crystal," Opt. Express 14, 6353-6358 (2006).
    [CrossRef] [PubMed]
  19. S. Mandal and D. Erickson, "Optofluidic transport in liquid core waveguiding structures," Appl. Phys. Lett. 90, 184103 (2007).
    [CrossRef]
  20. S.  Kawata and T.  Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett.  21, 1768-1770 (1996).
    [CrossRef] [PubMed]
  21. T. Tanaka and S. Yamamoto, "Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131-3133 (2000).
    [CrossRef]
  22. K.  Grujic, O. G.  Hellesø, J. P.  Hole, and J. S.  Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express  13, 1-7 (2005).
    [CrossRef] [PubMed]
  23. K. Grujic and O. G. Hellesø, "Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide," Opt. Express 15, 6470-6477 (2007).
    [CrossRef] [PubMed]
  24. S. Gaugiran, S. Gétin, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, and J.M. Fedeli, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005).
    [CrossRef] [PubMed]
  25. D. Psaltis, S.R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  26. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics 1, 106-114 (2007).
    [CrossRef]
  27. B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 230, 91-94 (2004).
    [CrossRef]
  28. B. Y. Shew, C. H. Huo, Y. C. Huang, Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sens. Actuators A 120, 383-389 (2005).
    [CrossRef]
  29. D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, "SU-8 micro-biosensor based on Mach-Zender interferometer," Rev. Adv. Mater. Sci. 10, 295-299 (2005).
  30. MicroChem, http://www.microchem.com
  31. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
    [CrossRef] [PubMed]
  32. Duke Scientific Corporation, http://www.dukescientfic.com
  33. A. H. J. Yang and D. Erickson "Stability analysis of optofluidic transport on solid-core waveguiding structures" Submitted (2007).
  34. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Forces on a Rayleigh particle in the cover region of a planarwaveguide," Lightwave Tech. Lett. 18, 388-400 (2000).
    [CrossRef]
  35. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Noordhoff International, 1973).

2007 (4)

2006 (3)

D. Psaltis, S.R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

A. Rahmani and P. C. Chaumet, "Optical trapping near a photonic crystal," Opt. Express 14, 6353-6358 (2006).
[CrossRef] [PubMed]

S. Cran-McGreehin, T. F. Krauss and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

2005 (5)

H. Y. Jaising and O. G. Hellesø, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005).
[CrossRef]

K.  Grujic, O. G.  Hellesø, J. P.  Hole, and J. S.  Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express  13, 1-7 (2005).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, and J.M. Fedeli, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005).
[CrossRef] [PubMed]

B. Y. Shew, C. H. Huo, Y. C. Huang, Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sens. Actuators A 120, 383-389 (2005).
[CrossRef]

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, "SU-8 micro-biosensor based on Mach-Zender interferometer," Rev. Adv. Mater. Sci. 10, 295-299 (2005).

2004 (7)

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 230, 91-94 (2004).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Lett. 4, 1415-1419 (2004).
[CrossRef]

R. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, and D. Marr, "Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars," Opt. Express 12, 4390-4398 (2004).
[CrossRef] [PubMed]

H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech. 36, 381-411 (2004).
[CrossRef]

K. C. Neuman and Steven Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
[CrossRef] [PubMed]

2003 (4)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

F. V. Ignatovich and L. Novotny, "Experimental study of nanoparticle detection by optical gradient forces," Rev. Sci. Instrum. 74, 5231-5235 (2003).
[CrossRef]

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, "Optical manipulation of objects and biological cells in microfluidic devices," Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

2001 (1)

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

2000 (2)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Forces on a Rayleigh particle in the cover region of a planarwaveguide," Lightwave Tech. Lett. 18, 388-400 (2000).
[CrossRef]

T. Tanaka and S. Yamamoto, "Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131-3133 (2000).
[CrossRef]

1999 (1)

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1986 (1)

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Annu. Rev. Fluid Mech. (1)

H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech. 36, 381-411 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

S. Mandal and D. Erickson, "Optofluidic transport in liquid core waveguiding structures," Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

T. Tanaka and S. Yamamoto, "Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131-3133 (2000).
[CrossRef]

Biomed. Microdevices (1)

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, "Optical manipulation of objects and biological cells in microfluidic devices," Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Electrophoresis (1)

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

S. Cran-McGreehin, T. F. Krauss and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Lab. Chip (1)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Lightwave Tech. Lett. (1)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Forces on a Rayleigh particle in the cover region of a planarwaveguide," Lightwave Tech. Lett. 18, 388-400 (2000).
[CrossRef]

Nano Lett. (1)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Lett. 4, 1415-1419 (2004).
[CrossRef]

Nature (3)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

D. Psaltis, S.R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Nature Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics 1, 106-114 (2007).
[CrossRef]

Opt. Commun. (2)

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 230, 91-94 (2004).
[CrossRef]

H. Y. Jaising and O. G. Hellesø, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Rev. Adv. Mater. Sci. (1)

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, "SU-8 micro-biosensor based on Mach-Zender interferometer," Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Rev. Sci. Instrum. (2)

K. C. Neuman and Steven Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

F. V. Ignatovich and L. Novotny, "Experimental study of nanoparticle detection by optical gradient forces," Rev. Sci. Instrum. 74, 5231-5235 (2003).
[CrossRef]

Sens. Actuators A (1)

B. Y. Shew, C. H. Huo, Y. C. Huang, Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sens. Actuators A 120, 383-389 (2005).
[CrossRef]

Other (4)

MicroChem, http://www.microchem.com

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Noordhoff International, 1973).

Duke Scientific Corporation, http://www.dukescientfic.com

A. H. J. Yang and D. Erickson "Stability analysis of optofluidic transport on solid-core waveguiding structures" Submitted (2007).

Supplementary Material (3)

» Media 1: MOV (117 KB)     
» Media 2: MOV (157 KB)     
» Media 3: MOV (29 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The electric field profile of the quasi-TM mode for a water-clad SU-8 waveguide on a fused silica substrate. The waveguide height and width are 560 nm and 2.8 μm respectively.

Fig. 2.
Fig. 2.

Schematic of trapping experiment. The optical waveguide propulsion is perpendicular to the direction of the pressure driven flow in the channel.

Fig. 3.
Fig. 3.

(124 kB) Movie of the propulsion of particles with a diameter of 2 μm. [Media 1]

Fig. 4.
Fig. 4.

Plot of terminal optical transport velocity vs output power for a series of 3 μm diameter particles on the same waveguide. Optical transport velocities measured perpendicular to the direction of the imposed pressure driven flow and therefore represent only the effects of optical propulsion. Each data point represents average velocity of a single particle trapped on a waveguide. Error bars represent standard deviation of velocity measurements for the given particle (i.e. for each trapped particle multiple velocity measurements were made at different points on the waveguide).

Fig. 5.
Fig. 5.

Computed (a) flow streamlines and (b) electric field at the midplane of the waveguide. Particle in both cases is a 2.5 μm polystyrene sphere on a 560 nm tall and 2.8 μm wide SU-8 waveguide excited at 975 nm. Green arrow in (b) indicates the net direction of FEM. (c) Plot of propulsion force per watt of input power as a function of particle size. Error bars indicate uncertainties in known particle size as reported by the manufacturer.

Fig. 6.
Fig. 6.

Experimentally obtained and numerically computed relative particle terminal optical transport velocity as a function of particle diameter. Optical transport velocities measured perpendicular to the direction of the imposed pressure driven flow and thus represent only the effects of optical propulsion. Error bars on experimental results represent standard deviation of all measurements. Error bars on numerical simulations are representative of the uncertainty in known particle size (i.e. the upper bound and lower bound on the error bars are velocity values computed for upper and lower bounds of particle polydispersity as reported by the manufacturer).

Fig. 7.
Fig. 7.

(164 kB) Movie of 2 μm diameter particles trapped by a waveguide bend and overtaken by a trapped 3 μm diameter particle. The particles are all trapped and propelled along the same waveguide parallel to the channel flow. [Media 2]

Fig. 8.
Fig. 8.

(36 kB) Movie of 2 μm diameter particles trapped by a waveguide bend counter to the direction of pressure-driven flow. [Media 3]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T M = DE * + HB * 1 2 ( D E * + H B * ) I
F EM = s ( T M n ) dS
F D = s ( T F n ) dS
μ 2 v p = 0
v = 0
T F = p I + μ ( v + v T )
v t = F EM C
C = 6 πaμ [ 1 9 16 ( a h ) + 1 8 ( a h ) 3 45 256 ( a h ) 4 1 16 ( a h ) 5 ]

Metrics