Abstract

Recycling light back into a plasma lamp’s radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultra-bright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
    [Crossref]
  2. U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
    [Crossref]
  3. U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
    [Crossref]
  4. J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
    [Crossref] [PubMed]
  5. D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
    [Crossref]
  6. C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
    [Crossref]
  7. D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
    [Crossref]
  8. L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
    [Crossref]
  9. K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
    [Crossref]
  10. Hamamatsu Inc., Shimokanzo, Toyooka Village, Iwata-gun, Shizuoka-ken, 438-0193, Japan, technical brochures (and personal communications, 2004).
  11. D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
    [Crossref]

2007 (2)

D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
[Crossref]

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

2006 (3)

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
[Crossref]

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

2005 (3)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
[Crossref]

2004 (2)

K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Alxneit, I.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Ament, J.

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

Behr, G.

D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
[Crossref]

Brunner, Y.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Cromwijk, J. W.

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

Derra, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

Feuermann, D.

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
[Crossref]

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

Fischer, E.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

Fu, L.

L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
[Crossref]

Giese, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Gordon, J. M.

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
[Crossref]

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

Guesdon, C.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Hechtfischer, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Heusler, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Inatsugu, S.

K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
[Crossref]

Koerber, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Leutz, R.

L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
[Crossref]

Li, K. K.

K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
[Crossref]

Löser, W.

D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
[Crossref]

Mackens, U.

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

Malul, A.

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

Mizrahi, S.

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

Moench, H.

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Nakar, D.

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

Ng, T. W.

D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
[Crossref]

Niemann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

Noertemann, F.C.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Pekarski, P.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Petrasch, J.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Pollmann-Retsch, J.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

Pollman-Retsch, J.

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Ries, H.

L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
[Crossref]

Ritz, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Shaco-Levy, R.

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

Sillyman, S.

K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
[Crossref]

Souptel, D.

D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
[Crossref]

Sturzenegger, M.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Tschudi, H. R.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Weichmann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Winkel, L.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Wuillemin, D.

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

Appl. Phys. Lett. (1)

D. Feuermann, J. M. Gordon, and T. W. Ng, “Photonic surgery with noncoherent light,” Appl. Phys. Lett. 88, 114104 (2006).
[Crossref]

J. Appl. Phys. (1)

L. Fu, R. Leutz, and H. Ries, “Spectroscopic measurement of radiation of high-pressure mercury discharge lamps,” J. Appl. Phys. 97, 123302 (2005).
[Crossref]

J. Biomed. Opt. (1)

J. M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament, and S. Mizrahi, “Fiberoptic surgery by ultrabright lamp light,” J. Biomed. Opt. 11, 050509 (2006).
[Crossref] [PubMed]

J. Cryst. Growth (1)

D. Souptel, W. Löser, and G. Behr, “Vertical optical floating zone furnace: principles of irradiation profile formation,” J. Cryst. Growth 300, 538–550 (2007).
[Crossref]

J. Phys. D: Appl. Phys. (1)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “UHP lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38, 2995–3010 (2005).
[Crossref]

Opt. Eng. (1)

K. K. Li, S. Sillyman, and S. Inatsugu, “Optimization of dual paraboloidal reflector and polarization system for displays using a ray-tracing model,” Opt. Eng. 43, 1545–1551 (2004).
[Crossref]

Proc. SPIE (2)

U. Weichmann, J. W. Cromwijk, G. Heusler, U. Mackens, H. Moench, and J. Pollman-Retsch, “Light sources for small-étendue applications,” Proc. SPIE 5740, 13–26 (2005).
[Crossref]

U. Weichmann, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, H. Moench, F.C. Noertemann, P. Pekarski, J. Pollman-Retsch, and A. Ritz, “UHP lamps for projection systems,” Proc. SPIE 5289, 255–265 (2004).
[Crossref]

Sol. Energy (1)

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, J. Petrasch, Y. Brunner, L. Winkel, and M. Sturzenegger, “PSI’s 1 kW imaging furnace - a tool for high-temperature chemical reactivity studies,” Sol. Energy 80, 1344–1348 (2006).
[Crossref]

SPIE Proc. (1)

D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultra-bright Xenon short-arc discharge lamps for novel applications,” SPIE Proc. 6670 (to be published, 2007).
[Crossref]

Other (1)

Hamamatsu Inc., Shimokanzo, Toyooka Village, Iwata-gun, Shizuoka-ken, 438-0193, Japan, technical brochures (and personal communications, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of a short-arc discharge lamp with a spherical recycling mirror, including the path of a light ray retro-reflected from the brightest zone.

Fig. 2.
Fig. 2.

(a). Schematic of imaging lamp emissions onto a screen where the magnified plasma arc was mapped and its spectral content assessed. (b) Photograph including the lamp’s bulb and 2.0 mm inter-electrode region prior to ignition (cathode below, anode above).

Fig. 3.
Fig. 3.

(a). Magnified image of the plasma arc (no recycling). (b) With the recycled image traversing the colder outer plasma region. (c) Adjacent images projected onto a perforated screen [see Fig. 2(a)]. The directions of axial and off-center displacement corresponding to movement of the spherical mirror are indicated. Measurements with the spectrometer’s optical fiber inserted into each hole allowed spatial and spectral mapping of the actual and recycled images which are magnified by a factor of 50. The center-to-center hole distance is 5 mm.

Fig. 4.
Fig. 4.

(a). Full-gap recycling: the recycled inverted image is superimposed upon the actual plasma arc. (b) Small-gap recycling: the hottest brightest regions of both the actual plasma and the recycled image are overlapped, but with a substantial percentage of the recycled image projected beyond the plasma arc onto the cathode.

Fig. 5.
Fig. 5.

Spectral radiance of the (a) direct emission, as in Fig. 3(a), (b) reflected image alongside the actual arc, as in Figs. 3(b)–3(c), and (c) reflected image superimposed on the plasma arc in small-gap recycling, as in Fig. 4(b). The inset highlights the line peaks in the near IR. The experimental uncertainty in radiance measurements here and in the graphs that follow is 10%.

Fig. 6.
Fig. 6.

Ratio of the radiance of the arc recycled through the outer plasma regions [as in Figs. 3(b)–3(c)] to that of the actual arc, as a function of axial position relative to the cathode tip, for the 4 principal spectral bands and the spectrum-integrated values. The horizontal broken line indicates the estimated losses of 23% from the surrounding optic due to mirror absorptivity and Fresnel reflections at 4 additional air-glass interfaces.

Fig. 7.
Fig. 7.

Local radiance enhancement measured along the lamp’s axis, starting from small-gap recycling (overlapping the brightest region of the inverted reflected image with the brightest region of the actual arc near the cathode tip, as in Fig. 4(b) and the inset), and translating the reflected image toward the anode. The dotted straight lines in the inset indicate the contour of the cathode’s reflected image. The photo inset overlays the circular image of the remote optical fiber tip in the lamp surgery system [4,5], toward illustrating the compromise between collection efficiency and maximum attainable radiance in such constrained applications.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R 1 = 1 + η o ( 1 ε ) .
R 2 = 1 + η o ε 2 + ( η o ε 2 ) 2 + = 1 { 1 ( η o ε 2 ) } .
R = R 1 R 2 = { 1 + η o ( 1 ε ) } { 1 ( η 0 ε 2 ) }
1 { 1 ( η o 2 ) } R 1 + η o .

Metrics