Abstract

We introduce the concept of metafluids — liquid metamaterials based on clusters of metallic nanoparticles which we will term Artificial Plasmonic Molecules (APMs). APMs comprising four nanoparticles in a tetrahedral arrangement have isotropic electric and magnetic responses and are analyzed using the plasmon hybridization (PH) method, an electrostatic eigenvalue equation, and vectorial finite element frequency domain (FEFD) electromagnetic simulations. With the aid of group theory, we identify the resonances that provide the strongest electric and magnetic response and study them as a function of separation between spherical nanoparticles. It is demonstrated that a colloidal solution of plasmonic tetrahedral nanoclusters can act as an optical medium with very large, small, or even negative effective permittivity, ε eff, and substantial effective magnetic susceptibility, χ eff = μ eff - 1, in the visible or near infrared bands. We suggest paths for increasing the magnetic response, decreasing the damping, and developing a metafluid with simultaneously negative ε eff and μ eff.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153 (1984).
    [Crossref]
  2. G. C. Schatz and R. P. van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds., pp. 1–16 (John Wiley, Chichester, 2002).
  3. M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
    [Crossref]
  4. J. B. Jackson and N. J. Halas, “Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates,” Proc. Nat. Acad. Sci. USA  101, 17,930 (2004).
    [Crossref] [PubMed]
  5. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
    [Crossref] [PubMed]
  6. D. J. Anderson and M. Moskovits, “A SERS-active system based on silver nanoparticles tethered to a deposited silver film,” J. Phys. Chem. B 110, 13,722 (2006).
    [Crossref] [PubMed]
  7. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
    [Crossref] [PubMed]
  8. V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
    [Crossref] [PubMed]
  9. G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
    [Crossref]
  10. V. N. Manoharan and D. J. Pine, “Building Materials by Packing Spheres,” Mater. Res. Soc. Bull. 29, 91 (2004).
    [Crossref]
  11. Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
    [Crossref]
  12. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
    [Crossref] [PubMed]
  13. M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
    [Crossref]
  14. W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
    [Crossref]
  15. O. N. Singh and A. Lakhtakia, eds., Electromagnetic Waves in Unconventional Materials and Structures (John Wiley, New York, 2000).
  16. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
    [Crossref] [PubMed]
  17. D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B 22, 3527 (1980).
    [Crossref]
  18. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
    [Crossref]
  19. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444 (2004).
    [Crossref] [PubMed]
  20. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
    [Crossref] [PubMed]
  21. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
    [Crossref] [PubMed]
  22. Y. Urzhumov and G. Shvets, “Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules,” Proc. SPIE 5927, 1D-1 (2005).
    [Crossref]
  23. D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
    [Crossref]
  24. Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).
  25. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
    [Crossref] [PubMed]
  26. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).
  27. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
    [Crossref]
  28. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A: Pure Appl. Opt. 8, S122–S130 (2006).
    [Crossref]
  29. V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
    [Crossref] [PubMed]
  30. G. Shvets and Y. Urzhumov, “Engineering the Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances,” Phys. Rev. Lett. 93, 243,902 (2004).
    [Crossref] [PubMed]
  31. G. Shvets and Y. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A: Pure Appl. Opt. 7, S23–S31 (2005).
    [Crossref]
  32. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  33. I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation,” IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).
  34. Y. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” to appear in Proc. SPIE (2007).
    [Crossref]
  35. P. Markos and C. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649 (2003).
    [Crossref] [PubMed]
  36. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
    [Crossref]
  37. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
    [Crossref]
  38. A. L. Efros, “Comment II on “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials”,” Phys. Rev. E 70, 048,602 (2004).
    [Crossref]
  39. C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
    [Crossref]
  40. D. Kang and N. A. Clark, “Fast Growth of Silica Colloidal Crystals,” J. Kor. Phys. Soc. 41, 817 (2002).
  41. P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
    [Crossref]
  42. A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
    [Crossref]
  43. D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
    [Crossref]
  44. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23, 468 (2006).
    [Crossref]
  45. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
    [Crossref] [PubMed]

2007 (5)

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

Y. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” to appear in Proc. SPIE (2007).
[Crossref]

2006 (11)

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
[Crossref] [PubMed]

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
[Crossref]

G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A: Pure Appl. Opt. 8, S122–S130 (2006).
[Crossref]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

D. J. Anderson and M. Moskovits, “A SERS-active system based on silver nanoparticles tethered to a deposited silver film,” J. Phys. Chem. B 110, 13,722 (2006).
[Crossref] [PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
[Crossref] [PubMed]

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation,” IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23, 468 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

2005 (6)

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
[Crossref]

Y. Urzhumov and G. Shvets, “Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules,” Proc. SPIE 5927, 1D-1 (2005).
[Crossref]

G. Shvets and Y. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A: Pure Appl. Opt. 7, S23–S31 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

2004 (7)

A. L. Efros, “Comment II on “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials”,” Phys. Rev. E 70, 048,602 (2004).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
[Crossref] [PubMed]

G. Shvets and Y. Urzhumov, “Engineering the Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances,” Phys. Rev. Lett. 93, 243,902 (2004).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444 (2004).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates,” Proc. Nat. Acad. Sci. USA  101, 17,930 (2004).
[Crossref] [PubMed]

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

V. N. Manoharan and D. J. Pine, “Building Materials by Packing Spheres,” Mater. Res. Soc. Bull. 29, 91 (2004).
[Crossref]

2003 (4)

V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

P. Markos and C. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649 (2003).
[Crossref] [PubMed]

2002 (3)

D. Kang and N. A. Clark, “Fast Growth of Silica Colloidal Crystals,” J. Kor. Phys. Soc. 41, 817 (2002).

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

1998 (1)

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

1986 (1)

P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
[Crossref]

1985 (1)

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

1984 (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153 (1984).
[Crossref]

1980 (1)

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B 22, 3527 (1980).
[Crossref]

Anderson, D. J.

D. J. Anderson and M. Moskovits, “A SERS-active system based on silver nanoparticles tethered to a deposited silver film,” J. Phys. Chem. B 110, 13,722 (2006).
[Crossref] [PubMed]

Armand, X.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Bardeau, J. F.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Bergman, D. J.

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B 22, 3527 (1980).
[Crossref]

Boucle, J.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
[Crossref] [PubMed]

Brasselet, S.

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

Bulou, A.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Cho, Y.-S.

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

Clark, N. A.

D. Kang and N. A. Clark, “Fast Growth of Silica Colloidal Crystals,” J. Kor. Phys. Soc. 41, 817 (2002).

de Kruif, C. G.

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

Dimmock, J. O.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).

Duyne, R. P. van

G. C. Schatz and R. P. van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds., pp. 1–16 (John Wiley, Chichester, 2002).

Efros, A. L.

A. L. Efros, “Comment II on “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials”,” Phys. Rev. E 70, 048,602 (2004).
[Crossref]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
[Crossref] [PubMed]

Elsesser, M.

V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
[Crossref] [PubMed]

Elsesser, M. T.

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
[Crossref] [PubMed]

Fainman, Y.

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Halas, N. J.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates,” Proc. Nat. Acad. Sci. USA  101, 17,930 (2004).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
[Crossref] [PubMed]

Haslett, T.

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

Herlin, N.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Iersel, E. M. F. van

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates,” Proc. Nat. Acad. Sci. USA  101, 17,930 (2004).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
[Crossref] [PubMed]

Kang, D.

D. Kang and N. A. Clark, “Fast Growth of Silica Colloidal Crystals,” J. Kor. Phys. Soc. 41, 817 (2002).

Kassiba, A.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Kim, S.-H.

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

Korobkin, D.

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23, 468 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

Koster, G. F.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Li, K.

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

Lomakin, V.

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

Makowska-Janusik, M.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Manoharan, V.

V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
[Crossref] [PubMed]

Manoharan, V. N.

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

V. N. Manoharan and D. J. Pine, “Building Materials by Packing Spheres,” Mater. Res. Soc. Bull. 29, 91 (2004).
[Crossref]

Markos, P.

P. Markos and C. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649 (2003).
[Crossref] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

Mayergoyz, I. D.

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation,” IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
[Crossref]

Mayne, M.

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

Megen, W. van

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
[Crossref]

Metiu, H.

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153 (1984).
[Crossref]

Michel, E.

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

Mirin, N. A.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
[Crossref] [PubMed]

Mortensen, T. C.

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

Moskovits, M.

D. J. Anderson and M. Moskovits, “A SERS-active system based on silver nanoparticles tethered to a deposited silver film,” J. Phys. Chem. B 110, 13,722 (2006).
[Crossref] [PubMed]

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

Müller, J.

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Neuner III, B.

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

Nordlander, P.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444 (2004).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

Pine, D.

V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
[Crossref] [PubMed]

Pine, D. J.

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

V. N. Manoharan and D. J. Pine, “Building Materials by Packing Spheres,” Mater. Res. Soc. Bull. 29, 91 (2004).
[Crossref]

Prodan, E.

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444 (2004).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
[Crossref] [PubMed]

Pusey, P. N.

P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

Russel, W. B.

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

Sarychev, A. K.

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
[Crossref]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
[Crossref] [PubMed]

G. C. Schatz and R. P. van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds., pp. 1–16 (John Wiley, Chichester, 2002).

Shalaev, V. M.

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
[Crossref]

Shvets, G.

Y. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” to appear in Proc. SPIE (2007).
[Crossref]

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
[Crossref]

G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A: Pure Appl. Opt. 8, S122–S130 (2006).
[Crossref]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23, 468 (2006).
[Crossref]

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

G. Shvets and Y. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A: Pure Appl. Opt. 7, S23–S31 (2005).
[Crossref]

Y. Urzhumov and G. Shvets, “Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules,” Proc. SPIE 5927, 1D-1 (2005).
[Crossref]

G. Shvets and Y. Urzhumov, “Engineering the Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances,” Phys. Rev. Lett. 93, 243,902 (2004).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

Soukoulis, C.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

Statz, H.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).

Stockman, M. I.

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

Stroud, D.

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B 22, 3527 (1980).
[Crossref]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Tay, L.

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

Urzhumov, Y.

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

Y. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” to appear in Proc. SPIE (2007).
[Crossref]

G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A: Pure Appl. Opt. 8, S122–S130 (2006).
[Crossref]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23, 468 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

G. Shvets and Y. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A: Pure Appl. Opt. 7, S23–S31 (2005).
[Crossref]

Y. Urzhumov and G. Shvets, “Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules,” Proc. SPIE 5927, 1D-1 (2005).
[Crossref]

G. Shvets and Y. Urzhumov, “Engineering the Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances,” Phys. Rev. Lett. 93, 243,902 (2004).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

Vrij, A.

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Wheeler, R. G.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).

Williams, S. R.

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
[Crossref] [PubMed]

Yang, J.

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

Yang, S.-M.

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

Yi, G.-R.

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

Zhang, Z.

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation,” IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
[Crossref]

Zorman, C.

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

Zyss, J.

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

Acc. Chem. Res. (1)

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic Nanostructures: Artificial Molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref] [PubMed]

Adv. Mater. (1)

G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal Clusters of Silica or Polymer Microspheres,” Adv. Mater. 16, 1204 (2004).
[Crossref]

Appl. Phys. A (1)

D. Korobkin, Y. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons,” Appl. Phys. A 88, 605–609 (2007).
[Crossref]

Chem. Mater. (1)

Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chem. Mater. 17, 5006 (2005).
[Crossref]

Chem. Phys. Lett. (1)

M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, “Octupolar metal nanoparticles as optically driven coherently controlled nanorotors,” Chem. Phys. Lett. 433, 130–135 (2006).
[Crossref]

Diamond and Related Materials (1)

A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, “Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles,” Diamond and Related Materials 11, 1243 (2002).
[Crossref]

IEEE Trans. Magn. (1)

I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation,” IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).

J. Chem. Phys. (3)

C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, “Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction,” J. Chem. Phys. 83, 4717 (1985).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444 (2004).
[Crossref] [PubMed]

J. Kor. Phys. Soc. (1)

D. Kang and N. A. Clark, “Fast Growth of Silica Colloidal Crystals,” J. Kor. Phys. Soc. 41, 817 (2002).

J. Mod. Opt. (1)

D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, “Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment,” J. Mod. Opt. 52(16), 2351 (2005).
[Crossref]

J. Opt. A: Pure Appl. (1)

Y. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, and G. Shvets, “Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes,” J. Opt. A: Pure Appl. 9, S1–S12 (2007).

J. Opt. A: Pure Appl. Opt. (2)

G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A: Pure Appl. Opt. 8, S122–S130 (2006).
[Crossref]

G. Shvets and Y. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A: Pure Appl. Opt. 7, S23–S31 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (3)

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12,302 (2006).
[Crossref] [PubMed]

D. J. Anderson and M. Moskovits, “A SERS-active system based on silver nanoparticles tethered to a deposited silver film,” J. Phys. Chem. B 110, 13,722 (2006).
[Crossref] [PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model,” J. Phys. Chem. B 110, 18,243 (2006).
[Crossref] [PubMed]

Mater. Res. Soc. Bull. (1)

V. N. Manoharan and D. J. Pine, “Building Materials by Packing Spheres,” Mater. Res. Soc. Bull. 29, 91 (2004).
[Crossref]

Nano Lett. (1)

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref] [PubMed]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381 (2006).
[Crossref] [PubMed]

P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
[Crossref]

Opt. Express (2)

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11,164 (2006).
[Crossref] [PubMed]

P. Markos and C. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649 (2003).
[Crossref] [PubMed]

Phys. Rev. B (2)

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B 22, 3527 (1980).
[Crossref]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155,412 (2005).
[Crossref]

Phys. Rev. E (5)

W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036,617 (2005).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065,602 (2003).
[Crossref]

A. L. Efros, “Comment II on “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials”,” Phys. Rev. E 70, 048,602 (2004).
[Crossref]

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036,609 (2006).
[Crossref]

Phys. Rev. Lett. (1)

G. Shvets and Y. Urzhumov, “Engineering the Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances,” Phys. Rev. Lett. 93, 243,902 (2004).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. (1)

J. B. Jackson and N. J. Halas, “Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates,” Proc. Nat. Acad. Sci. USA  101, 17,930 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Urzhumov and G. Shvets, “Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules,” Proc. SPIE 5927, 1D-1 (2005).
[Crossref]

Prog. Surf. Sci. (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153 (1984).
[Crossref]

Science (3)

V. Manoharan, M. Elsesser, and D. Pine, “Dense Packing and Symmetry in Small Clusters of Microspheres,” Science 301, 483 (2003).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanoparticles,” Science 302, 419 (2003).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

to appear in Proc. SPIE (1)

Y. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” to appear in Proc. SPIE (2007).
[Crossref]

Top. Appl. Phys. (1)

M. Moskovits, L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215 (2002).
[Crossref]

Other (4)

G. C. Schatz and R. P. van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds., pp. 1–16 (John Wiley, Chichester, 2002).

O. N. Singh and A. Lakhtakia, eds., Electromagnetic Waves in Unconventional Materials and Structures (John Wiley, New York, 2000).

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(Color online) Irreducible representations and symmetry adapted linear combinations of the hybridized-dipole plasmon modes of the tetramer.

Fig. 2.
Fig. 2.

The plasmon modes up to l = 3 (at infinite separation) of a tetramer composed of 10 nm radius gold nanospheres in a dielectric medium of εs = 1.96 versus the distance between their centers. The modes are separated according to the irreducible representation to which they correspond.

Fig. 3.
Fig. 3.

(Color online) Examples of electrostatic resonances of a tetrahedral plasmonic molecule. Left column: potential on the surface. Right: potential (color) and electric field (arrows) in cross-sections. The lowest-lying resonance of each irreducible representation (see Table 1) except triplets (T 1, T 2) is presented. Gap-to-diameter ratio in the cluster is 1/10. Triplets are shown separately in Fig. 4.

Fig. 4.
Fig. 4.

(Color online) Positions of the two lowest-lying electrostatic resonances as a function of the gap-to-diameter ratio. Left vertical axis: resonant permittivity of a plasmonic particle relative to that of solvent (εp /εs ); the plots are applicable universally to any metal and solvent. Right axis: resonant wavelength for gold silica-coated tetramers in the index-matching solvent with ns = 1.4, assuming dielectric function of gold from [32]. Insets: electrostatic potential and electric field profiles of these T 1 and T 2 modes in clusters with gap/diameter=0.1.

Fig. 5.
Fig. 5.

(Color online) Extinction (solid curve) and absorption (dashed curve) cross-sections of a tetramer consisting of solid gold particles with D = 90 nm, gap 2 nm, in solvent with refractive index ns = 1.4.

Fig. 6.
Fig. 6.

(Color online) Extinction (solid curve) and absorption (dashed curve) cross-sections of a tetramer consisting of solid gold particles with D = 120 nm, gap 2 nm, in solvent with refractive index ns = 1.4.

Fig. 7.
Fig. 7.

(Color online) Field profiles at the two resonances of a tetramer characterized in Figure 6. Left: electric dipole resonance at λ = 756 nm; right: magnetic dipole resonance at λ = 935 nm. Color shows intensity of the out-of-plane magnetic field Hz in the plane containing centers of 3 spheres; arrows — in-plane electric induction (Dx ,Dy ) in the same plane. Horizontal axis: x, vertical: y.

Fig. 8.
Fig. 8.

(Color online) Effective permittivity ε eff of a solution with uniformly distributed tetramers (solid gold spheres, D = 90 nm, gap 1 nm, index of solvent ns = 1.4, volume per cluster V 0 = 0.0115 μm 3). Electric-dipole resonance (λ = 810 nm) and magnetic-dipole (λ = 890 nm) anti-resonance are identified by peaks in Im e eff.

Fig. 9.
Fig. 9.

(Color online) Effective magnetic permeability μ eff of a tetramer colloid described in Figure 8. Electric-dipole anti-resonance (λ = 810 nm) and magnetic-dipole (λ = 890 nm) resonance are identified by peaks in Im μ eff. Inset: local magnetic field enhancement, max |H/H 0|.

Tables (2)

Tables Icon

Table 1. Multipolar decomposition of irreducible representations of the symmetry group Td . Dots (+…) denote all multipoles higher than the last listed. Rα is the rotation operator. The non-physical magnetic monopole (pseudoscalar representation) given in parentheses cannot be constructed from electric charges. Dipoles are shown in bold face.

Tables Icon

Table 2. Non-chiral cubic groups, their vector and pseudovector irreducible representations related to electric dipole (ED) and magnetic dipole (MD) resonances, and the Lowest-Order Electric Multipole (LOEM) of magnetic dipole resonances. All listed minimum-vertex polyhedra except the pyritohedron (Th ) have been observed in colloidal sphere clusters [8].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D = ε ̂ E + ξ ̂ H ,
B = μ ̂ H + ζ ̂ E .
Γ dip 4 = A 1 + E + T 1 + 2 T 2 .
ε ( x ) ϕ = 0 .
θ ( x ) ϕ = s 2 ϕ ,
σ ( x ) = λ 2 π d S x σ ( x ) n ( x ) x G ( x , x ) ,
p n = x ( ϕ n n ) dS ( V p ϕ n ϕ n ndS ) 1 2 = ( ϕ n ) θ dV ( V p ( ϕ n ) 2 θ dV ) 1 2 ,
𝓜 = 1 2 c [ x × J ] θ dV = 8 πc ( ε 1 ) [ x × ( ϕ ) ] θ dV .
m n = [ n × x ] ϕ n dS ( V p ϕ n ϕ n n dS ) 1 2 .

Metrics