Abstract

We report the trapping and manipulation of bubbles in viscous glass melts through the use of a laser. This phenomenon is observed in bubbles tens of micrometers in diameter under illumination by low numerical aperture (NA = 0.55). Once the bubble was centered on the optical axis, it was trapped and followed a lateral relocation of the laser beam. This phenomenon is explained by modifications of the bubble’s shape induced by axial heating and a decrease in surface tension. It is shown that formation of a concave dimple on the bubble’s front surface explains the observed laser trapping and manipulation. This mechanism of laser trapping is expected to take place in other deformable materials and can also be used to remove bubbles from melts or liquids. For this technique to be effective, the alteration of the bubble’s shape should be faster than its expulsion out of the laser’s point of focus.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159, (1970).
    [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816, (2003).
    [CrossRef] [PubMed]
  3. D. McGloin, "Optical tweezers: 20 years on," Phil. Trans. R. Soc. A 364, 3521-3537, (2006).Q1
    [CrossRef] [PubMed]
  4. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829, (1996).
    [CrossRef] [PubMed]
  5. P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschieri, G. C. Spalding, W. Sibbett, P. A. Campbell and K. Dholakia, "Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays," Opt. Express 12, 593-600, (2004).
    [CrossRef] [PubMed]
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
    [CrossRef] [PubMed]
  7. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
    [CrossRef] [PubMed]
  8. H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697, (1999).
    [CrossRef]
  9. S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
    [CrossRef]
  10. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
    [CrossRef]
  11. Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
    [CrossRef]
  12. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424, (2003).
    [CrossRef] [PubMed]
  13. I. Smalyukh, D. Kaputa, A. Kachynski, A. Kuzmin, and P. Prasad, "Optical trapping of director structures and defects in liquid crystals using laser tweezers," Opt. Express 15, 4359-4371, (2007).
    [CrossRef] [PubMed]
  14. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
    [CrossRef] [PubMed]
  15. A. Casner and J. P. Delville, "Giant deformations of a liquid-liquid interface induced by the optical radiation pressure," Phys. Rev. Lett. 87, 054503, (2001).
    [CrossRef] [PubMed]
  16. S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
    [CrossRef]
  17. M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
    [CrossRef]
  18. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582, (1992).
    [CrossRef] [PubMed]
  19. J. Yamamoto, "On-demand optical tweezers using a liquid crystal spatial light modulator," Master Thesis of Hokkaido University, Japan. (2007).
  20. J. A. Maroto, V. P’erez-Mu˜nuzuri, and M. S. Romero-Cano "Introductory analysis of Bernard-Marangoni convection,"Eur. J. Phys. 28, 311-320, (2007).
    [CrossRef]
  21. K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
    [CrossRef]
  22. S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
    [CrossRef]

2007 (4)

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

J. A. Maroto, V. P’erez-Mu˜nuzuri, and M. S. Romero-Cano "Introductory analysis of Bernard-Marangoni convection,"Eur. J. Phys. 28, 311-320, (2007).
[CrossRef]

I. Smalyukh, D. Kaputa, A. Kachynski, A. Kuzmin, and P. Prasad, "Optical trapping of director structures and defects in liquid crystals using laser tweezers," Opt. Express 15, 4359-4371, (2007).
[CrossRef] [PubMed]

2006 (2)

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

D. McGloin, "Optical tweezers: 20 years on," Phil. Trans. R. Soc. A 364, 3521-3537, (2006).Q1
[CrossRef] [PubMed]

2005 (1)

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

2004 (1)

2003 (3)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424, (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816, (2003).
[CrossRef] [PubMed]

2001 (2)

A. Casner and J. P. Delville, "Giant deformations of a liquid-liquid interface induced by the optical radiation pressure," Phys. Rev. Lett. 87, 054503, (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

2000 (2)

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
[CrossRef]

1999 (2)

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697, (1999).
[CrossRef]

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

1997 (1)

K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
[CrossRef]

1996 (1)

1992 (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582, (1992).
[CrossRef] [PubMed]

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159, (1970).
[CrossRef]

Ananthakrishnan, R.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582, (1992).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159, (1970).
[CrossRef]

Campbell, P. A.

Casner, A.

A. Casner and J. P. Delville, "Giant deformations of a liquid-liquid interface induced by the optical radiation pressure," Phys. Rev. Lett. 87, 054503, (2001).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Cuschieri, A.

Delville, J. P.

A. Casner and J. P. Delville, "Giant deformations of a liquid-liquid interface induced by the optical radiation pressure," Phys. Rev. Lett. 87, 054503, (2001).
[CrossRef] [PubMed]

Dholakia, K.

Frank, T. G.

Gahagan, K. T.

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816, (2003).
[CrossRef] [PubMed]

Grimsdale, A.

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

Guck, J.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Hasegawa, I.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

Juodkazis, S.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
[CrossRef]

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697, (1999).
[CrossRef]

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

Kachynski, A.

Kaputa, D.

Kitamura, K.

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

Kuzmin, A.

Lincoln, B.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

Louchev, O.

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

MacDonald, M. P.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Maroto, J. A.

J. A. Maroto, V. P’erez-Mu˜nuzuri, and M. S. Romero-Cano "Introductory analysis of Bernard-Marangoni convection,"Eur. J. Phys. 28, 311-320, (2007).
[CrossRef]

Masuhara, H.

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
[CrossRef]

Matsuo, S.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

McGloin, D.

D. McGloin, "Optical tweezers: 20 years on," Phil. Trans. R. Soc. A 364, 3521-3537, (2006).Q1
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
[CrossRef]

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697, (1999).
[CrossRef]

Miwa, M.

M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
[CrossRef]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Mukai, N.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

Mullen, K.

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

Murazawa, N.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

Nabetani, Y.

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

Prasad, P.

Prentice, P. A.

Romeyke, M.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
[CrossRef]

Schinkinger, S.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

Shikata, M.

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

Sibbett, W.

Smalyukh, I.

Spalding, G. C.

Swartzlander, G. A.

Takahashi, T.

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

Tsukima, M.

K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
[CrossRef]

Wakaki, R.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

Wakatsuki, H.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

Wottawah, F.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

Yamaguchi, A.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

Yoshikawa, H.

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

Appl. Phys. A (1)

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, "Laser irradiation induced disintegration of a bubble in a glass melt," Appl. Phys. A 87, 41-45, (2007).Q4
[CrossRef]

Appl. Phys. Lett. (3)

S. Juodkazis,M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629, (1999).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl. Phys. Lett. 82, 4657-4659, (2003).
[CrossRef]

K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39, (1997).
[CrossRef]

Biophys. J. (2)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582, (1992).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham and J. K¨as, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784, (2001).Q2
[CrossRef] [PubMed]

Eur. J. Phys. (1)

J. A. Maroto, V. P’erez-Mu˜nuzuri, and M. S. Romero-Cano "Introductory analysis of Bernard-Marangoni convection,"Eur. J. Phys. 28, 311-320, (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Miwa, S. Juodkazis, and H. Misawa, "Drag of a laser trapped fine particle in a microregion," Jpn. J. Appl. Phys. 39, 1930-1933, (2000).
[CrossRef]

Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454, (2007).
[CrossRef]

Nanotechnology (1)

S. Juodkazis, H. Misawa, O. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802- 4805, (2006).Q5
[CrossRef]

Nature (3)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816, (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424, (2003).
[CrossRef] [PubMed]

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181, (2000).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

D. McGloin, "Optical tweezers: 20 years on," Phil. Trans. R. Soc. A 364, 3521-3537, (2006).Q1
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159, (1970).
[CrossRef]

A. Casner and J. P. Delville, "Giant deformations of a liquid-liquid interface induced by the optical radiation pressure," Phys. Rev. Lett. 87, 054503, (2001).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. K¨as, "Optical rheology of biological cells," Phys. Rev. Lett. 94, 098103, (2005).Q3
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697, (1999).
[CrossRef]

Other (1)

J. Yamamoto, "On-demand optical tweezers using a liquid crystal spatial light modulator," Master Thesis of Hokkaido University, Japan. (2007).

Supplementary Material (1)

» Media 1: MPG (3690 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The trapping force factor Qt for a sphere no = 2 in water no = 1.33 (a), and for a bubble no = 1 in glass melt no = 2 (b). The laser trapping beam is focused along the Z axis at a position above (+S) and below (-S) the center of the sphere. The numerical apertures of the objective lenses are 0.5 (1), 0.75 (2), 0.9 (3), 1.3 (4); respectively, the input aperture is uniformly filled. Calculated by Eqs. (1), (2) [19]; Qt = Qs + Qg , see text for details.

Fig. 2.
Fig. 2.

Manipulation of a bubble inside a glass (ABH61) melt. Trapping laser power is 0.4 W; scale bar 20 μm. The dashed contour is a visual guide to recognize position change. The dot marks the focal position. The time difference between the frames is approximately 0.25 s.

Fig. 3.
Fig. 3.

Laser trapping of a bubble inside glass (1310Er) melt. After trapping a large bubble (frames at 0.6 - 1.5 s), coalescence with a smaller one occurred at 1.8 s. The laser trapping power was 0.4 W; scale bar 20 μm. The dot marks the focal position.

Fig. 4.
Fig. 4.

Central cross sections of the intensity distributions of Ey 2 and Ex 2 components along with the refractive index (glass ns = 1.5 and bubble no = 1) for different bubble and irradiation geometries (see text for details). The incident Gaussian beam (the field components are (0,1,0)) propagated along the x-axis and was focused at the (0,0) position. The outline of shape-modified bubble is shown by a dashed line.

Fig. 5.
Fig. 5.

Description of the movie clip file of the Supplement (file size : 3.6MB). Evidence of convection inside a ABH61 glass melt created by irradiation by a tightly focused (NA = 0.55) laser beam of 0.4 W power at a 1064 nm wavelength. The temperature of the oven in which the glass sample was kept was 1000°C. The absorbing microparticles, most probably formed from a phase-separated Bi in the melt, are cyclically attracted and expelled out of the point of focus. The horizontal side length of the video frame is 65 μm. [Media 1]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F s = n s P c [ 1 + R cos 2 θ sin ( 2 θ 2 ε ) + R cos 2 θ 1 + R 2 + 2 R cos 2 ε T 2 ]
F g = n s P c [ R sin 2 θ sin ( 2 θ 2 ε ) + R sin 2 θ 1 + R 2 + 2 R cos 2 ε T 2 ] ,

Metrics