Abstract

Although conventional autofluorescence spectroscopy, in which fluorescence emission spectra are recorded for fixed excitation wavelengths, has demonstrated good performance in tissue diagnosis, it suffers from prolonged data acquisition time and broad-band fluorescence features. Synchronous spectroscopy has been proposed to overcome the limitations of conventional fluorescence spectroscopy but has not been applied to imaging for tissue diagnosis in vivo. Our group has developed a synchronous fluorescence imaging system to combine the great diagnostic potential of synchronous spectroscopy and the large field of view of imaging for cancer diagnosis. This system has been tested in a mouse skin model to capture synchronous fluorescence images. A simple discriminant analysis method and a more complicated multi-variate statistical method have been developed to generate a single diagnostic image from a large number of raw fluorescence images. Moreover, it was demonstrated that the diagnostic image generated from synchronous data is comparable to that generated from full spectral data in classification accuracy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Georgakoudi and M. S. Feld, "The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus," Gastrointest. Endosc. Clin N Am 14, 519-537, ix (2004).
    [CrossRef] [PubMed]
  2. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
    [CrossRef] [PubMed]
  3. R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
    [PubMed]
  4. D. M. Harris and J. Werkhaven, "Endogenous porphyrin fluorescence in tumors," Lasers Surg Med 7, 467-472 (1987).
    [CrossRef] [PubMed]
  5. T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
    [CrossRef] [PubMed]
  6. R. R. Alfano, Advances in Optical Biopsy and Optical Mammography (New York, 1998).
  7. S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
    [CrossRef] [PubMed]
  8. T. Vo-Dinh, "Multicomponent analysis by synchronous luminescence spectrometry," Analytical Chemistry 50, 396-401 (1978).
    [CrossRef]
  9. T. Vo-Dinh, "Synchronous luminescence spectroscopy: methodology and applicability," Appl. Spectrosc. 36, 576-581 (1982).
    [CrossRef]
  10. W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
    [CrossRef]
  11. D. M. Hueber, C. L. Stevenson, and T. Vo-Dinh, "Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters," Appl. Spectrosc. 49, 1624-1631 (1995).
    [CrossRef]
  12. M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
    [CrossRef]
  13. K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
    [CrossRef] [PubMed]
  14. A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
    [CrossRef] [PubMed]
  15. P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).
  16. M. D. Askari, and T. Vo-Dinh, "Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy," Biopolymers 73, 510-523 (2004).
    [CrossRef] [PubMed]
  17. L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
    [CrossRef] [PubMed]
  18. N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
    [CrossRef]
  19. T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
    [CrossRef] [PubMed]
  20. P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
    [CrossRef]
  21. T. Vo-Dinh, "Principle of synchronous luminescence (SL) technique for biomedical diagnostics," Proc. SPIE,  3911, 42-49 (2000)
    [CrossRef]
  22. S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
    [CrossRef]
  23. S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
    [CrossRef] [PubMed]
  24. C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans Biomed Eng 48, 96-104 (2001).
    [CrossRef] [PubMed]
  25. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging for brain tumor demarcation," Appl. Opt. 46, 1896-1910 (2007).
    [CrossRef] [PubMed]
  26. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
    [CrossRef] [PubMed]
  27. M. Terzaghi-Howe, "Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo," Carcinogenesis 8, 145-150 (1987).
    [CrossRef] [PubMed]
  28. R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice Hall, 2002).
  29. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
    [CrossRef] [PubMed]
  30. T. Vo-Dinh, Modern Fluorescence Spectroscopy," E. L. Wehry, ed. (Plenum Publishing Corporation, 1981), pp. 173-176.

2007 (1)

2006 (2)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

2005 (3)

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

2004 (2)

M. D. Askari, and T. Vo-Dinh, "Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy," Biopolymers 73, 510-523 (2004).
[CrossRef] [PubMed]

I. Georgakoudi and M. S. Feld, "The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus," Gastrointest. Endosc. Clin N Am 14, 519-537, ix (2004).
[CrossRef] [PubMed]

2003 (1)

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

2001 (1)

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans Biomed Eng 48, 96-104 (2001).
[CrossRef] [PubMed]

2000 (2)

T. Vo-Dinh, "Principle of synchronous luminescence (SL) technique for biomedical diagnostics," Proc. SPIE,  3911, 42-49 (2000)
[CrossRef]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

1999 (1)

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

1996 (1)

L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
[CrossRef] [PubMed]

1995 (2)

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

D. M. Hueber, C. L. Stevenson, and T. Vo-Dinh, "Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters," Appl. Spectrosc. 49, 1624-1631 (1995).
[CrossRef]

1994 (1)

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

1993 (1)

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

1990 (1)

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

1989 (1)

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

1987 (3)

M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
[CrossRef]

D. M. Harris and J. Werkhaven, "Endogenous porphyrin fluorescence in tumors," Lasers Surg Med 7, 467-472 (1987).
[CrossRef] [PubMed]

M. Terzaghi-Howe, "Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo," Carcinogenesis 8, 145-150 (1987).
[CrossRef] [PubMed]

1985 (1)

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

1982 (1)

1978 (1)

T. Vo-Dinh, "Multicomponent analysis by synchronous luminescence spectrometry," Analytical Chemistry 50, 396-401 (1978).
[CrossRef]

Anbupalam, T.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Anvari, B.

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Aruna, P. R.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Askari, M. D.

M. D. Askari, and T. Vo-Dinh, "Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy," Biopolymers 73, 510-523 (2004).
[CrossRef] [PubMed]

Balas, C.

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans Biomed Eng 48, 96-104 (2001).
[CrossRef] [PubMed]

Balasubramanian, D.

L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
[CrossRef] [PubMed]

Bartoli, C.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Bono, A.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Bowman, E. D.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Breslin, T. M.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

Buckley, F. P.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Carrara, M.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Chen, K.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Colombo, A.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Cooper, D. P.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Cunningham, G.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Denovo, R. C.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Diagaradjane, P.

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Dimitrijevic, B.

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Dramicanin, M. D.

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Dramicanin, T.

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Ebenezar, J.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Farmer, P. B.

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

Farris, C.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi and M. S. Feld, "The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus," Gastrointest. Endosc. Clin N Am 14, 519-537, ix (2004).
[CrossRef] [PubMed]

Frazier, D.

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

Ganesan, S.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Gebhart, S. C.

Georgakoudi, I.

I. Georgakoudi and M. S. Feld, "The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus," Gastrointest. Endosc. Clin N Am 14, 519-537, ix (2004).
[CrossRef] [PubMed]

Gilchrist, K. W.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

Hancewicz, T. M.

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

Harris, C. C.

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

Harris, D. M.

D. M. Harris and J. Werkhaven, "Endogenous porphyrin fluorescence in tumors," Lasers Surg Med 7, 467-472 (1987).
[CrossRef] [PubMed]

Hemamalini, S.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Hueber, D. M.

Hung, J.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Isola, N. R.

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

Jie, Y.

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Jokanovic, V.

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Kasili, P.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Kato, S.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Korbelik, M.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Koteeswaran, D.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Lam, S.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Lualdi, M.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Mahadevan, A.

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

Mahadevan-Jansen, A.

Manchester, D. K.

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

Mann, D. L.

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

Marchesini, R.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Martin, M. E.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

McLean, D.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Meyers, C. L.

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

Mitchell, M. F.

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

Muthvelu, K.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Nikolic-Vukosavljevic, D.

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Overholt, B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Overholt, B. F.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Palcic, B.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Palmer, G. M.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

Panjehpour, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Petruzzelli, S.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Phan, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Povey, A. C.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Profio, A. E.

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Ramanujam, N.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

Richards-Kortum, R.

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

Rowe, M.

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

Rowe, M. L.

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

Sharma, Y.

L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
[CrossRef] [PubMed]

Shields, P. G.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

Sneed, R.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Stevenson, C. L.

Subramanyan, K.

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

Terzaghi-Howe, M.

M. Terzaghi-Howe, "Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo," Carcinogenesis 8, 145-150 (1987).
[CrossRef] [PubMed]

Thompson, R. C.

Thomsen, S.

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

Tomatis, S.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Tragni, G.

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Trivers, G.

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

Uma, L.

L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
[CrossRef] [PubMed]

Uziel, M.

M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
[CrossRef]

Vahakangas, K.

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

Vengadesan, N.

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Vodinh, T.

M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
[CrossRef]

Vo-Dinh, T.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

M. D. Askari, and T. Vo-Dinh, "Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy," Biopolymers 73, 510-523 (2004).
[CrossRef] [PubMed]

T. Vo-Dinh, "Principle of synchronous luminescence (SL) technique for biomedical diagnostics," Proc. SPIE,  3911, 42-49 (2000)
[CrossRef]

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

D. M. Hueber, C. L. Stevenson, and T. Vo-Dinh, "Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters," Appl. Spectrosc. 49, 1624-1631 (1995).
[CrossRef]

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

T. Vo-Dinh, "Synchronous luminescence spectroscopy: methodology and applicability," Appl. Spectrosc. 36, 576-581 (1982).
[CrossRef]

T. Vo-Dinh, "Multicomponent analysis by synchronous luminescence spectrometry," Analytical Chemistry 50, 396-401 (1978).
[CrossRef]

Wabuyele, M. B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Ward, R. J.

M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
[CrossRef]

Watts, W. E.

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

Werkhaven, J.

D. M. Harris and J. Werkhaven, "Endogenous porphyrin fluorescence in tumors," Lasers Surg Med 7, 467-472 (1987).
[CrossRef] [PubMed]

Weston, A.

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

Wilson, D.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Wong, M. S.

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Xu, F.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

Yaseen, M. A.

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Zhang, S. L.

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

Zhu, C.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

Anal. Lett. (2)

W. E. Watts, N. R. Isola, D. Frazier, and T. Vo-Dinh, "Differentiation of normal and neoplastic cells by synchronous fluorescence: Rat liver epithelial and rat hepatoma cell models," Anal. Lett. 32, 2583-2594 (1999).
[CrossRef]

M. Uziel, R. J. Ward, and T. Vodinh, "Synchronous Fluorescence Measurement of Bap Metabolites in Human and Animal Urine," Anal. Lett. 20, 761-776 (1987).
[CrossRef]

Analytical Chemistry (1)

T. Vo-Dinh, "Multicomponent analysis by synchronous luminescence spectrometry," Analytical Chemistry 50, 396-401 (1978).
[CrossRef]

Ann. Biomed. Eng. (1)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Biopolymers (1)

M. D. Askari, and T. Vo-Dinh, "Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy," Biopolymers 73, 510-523 (2004).
[CrossRef] [PubMed]

Carcinogenesis (2)

A. Weston, M. L. Rowe, D. K. Manchester, P. B. Farmer, D. L. Mann, and C. C. Harris, "Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans," Carcinogenesis 10, 251-257 (1989).
[CrossRef] [PubMed]

M. Terzaghi-Howe, "Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo," Carcinogenesis 8, 145-150 (1987).
[CrossRef] [PubMed]

Chest (1)

S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, and A. E. Profio, "Detection of early lung cancer using low dose Photofrin II," Chest 97, 333-337 (1990).
[CrossRef] [PubMed]

Environ Health Perspect (1)

K. Vahakangas, G. Trivers, M. Rowe, and C. C. Harris, "Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry," Environ Health Perspect 62, 101-104 (1985).
[CrossRef] [PubMed]

Gastrointest. Endosc. Clin N Am (1)

I. Georgakoudi and M. S. Feld, "The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus," Gastrointest. Endosc. Clin N Am 14, 519-537, ix (2004).
[CrossRef] [PubMed]

IARC Sci Publ (1)

P. G. Shields, S. Kato, E. D. Bowman, S. Petruzzelli, D. P. Cooper, A. C. Povey, and A. Weston, "Combined micropreparative techniques with synchronous fluorescence spectroscopy or 32P-postlabelling assay for carcinogen-DNA adduct determination," IARC Sci Publ, 243-254 (1993).

IEEE Trans Biomed Eng (2)

C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans Biomed Eng 48, 96-104 (2001).
[CrossRef] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)," IEEE Trans Biomed Eng 50, 1233-1242 (2003).
[CrossRef] [PubMed]

J. Cell Biochem. Suppl (1)

R. Richards-Kortum, M. F. Mitchell, N. Ramanujam, A. Mahadevan, and S. Thomsen, "In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker," J. Cell Biochem. Suppl 19, 111-119 (1994).
[PubMed]

J. of Biomed. Opt. (2)

S. L. Zhang, C. L. Meyers, K. Subramanyan, and T. M. Hancewicz, "Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods," J. of Biomed. Opt. 10, 031107 (2005).
[CrossRef]

P. Diagaradjane, M. A. Yaseen, Y. Jie, M. S. Wong, and B. Anvari, "Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice," J. of Biomed. Opt. 11, 14012 (2006).
[CrossRef]

Lasers Surg Med (2)

D. M. Harris and J. Werkhaven, "Endogenous porphyrin fluorescence in tumors," Lasers Surg Med 7, 467-472 (1987).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, 3rd, and R. Sneed, "In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices," Lasers Surg Med 16, 41-47 (1995).
[CrossRef] [PubMed]

Neoplasia (1)

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Photochem Photobiol (2)

L. Uma, Y. Sharma, and D. Balasubramanian, "Fluorescence properties of isolated intact normal human corneas," Photochem Photobiol 63, 213-216 (1996).
[CrossRef] [PubMed]

T. Dramicanin, M. D. Dramicanin, V. Jokanovic, D. Nikolic-Vukosavljevic, and B. Dimitrijevic, "Three-dimensional total synchronous luminescence spectroscopy criteria for discrimination between normal and malignant breast tissues," Photochem Photobiol 81, 1554-1558 (2005).
[CrossRef] [PubMed]

Physics in Medicine and Biology (1)

S. Tomatis, M. Carrara, A. Bono, C. Bartoli, M. Lualdi, G. Tragni, A. Colombo, and R. Marchesini, "Automated melanoma detection with a novel multispectral imaging system: results of a prospective study," Physics in Medicine and Biology 50, 1675-1687 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

T. Vo-Dinh, "Principle of synchronous luminescence (SL) technique for biomedical diagnostics," Proc. SPIE,  3911, 42-49 (2000)
[CrossRef]

N. Vengadesan, T. Anbupalam, S. Hemamalini, J. Ebenezar, K. Muthvelu, D. Koteeswaran, P. R. Aruna, and S. Ganesan, "Characterization of cervical normal and abnormal tissues by synchronous luminescence spectroscopy," Proc. SPIE 4613, 13-17 (2002).
[CrossRef]

Other (3)

R. R. Alfano, Advances in Optical Biopsy and Optical Mammography (New York, 1998).

T. Vo-Dinh, Modern Fluorescence Spectroscopy," E. L. Wehry, ed. (Plenum Publishing Corporation, 1981), pp. 173-176.

R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice Hall, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the multi-spectral imaging system.

Fig. 2.
Fig. 2.

Panel of raw fluorescence images. In the order from left to right and then from top to bottom, the initial excitation wavelength is 420 nm and the emission wavelength starts with the excitation wavelength plus 30 nm and increases at an increment of 10 nm first. When the emission wavelength reaches 650 nm, the excitation wavelength increases by 20 nm and the emission wavelength starts from the new excitation wavelength plus 30 nm and increases again. This continues till (λexc = 600 nm, λemm = 650 nm). The image taken at (λexc = 600 nm, λemm = 630 nm) was not shown because it was saturated. As an example for synchronous data, the images highlighted by the dashed rectangles correspond to synchronous data acquired for Δλ = 30 nm. It should be pointed out that the absolution intensity levels of those images have been changed from their original values to ensure the visibility of all the images in one panel.

Fig. 3.
Fig. 3.

Flowchart of (a) the discriminant analysis of spectral data; (b) the multi-variate discriminant analysis. In (b), ten most important principal component (PC) scores for full spectra analysis or all key PC scores for synchronous spectra analysis instead of original spectral data were used for classification. The left dotted rectangle indicates the training part while the right dotted rectangle indicates the classification part.

Fig. 4.
Fig. 4.

The semi-transparent version of the manually labeled training image overlaid on a representative fluorescence image taken at (λexc = 440 nm, λemm = 540 nm). The blue region was manually assigned as normal, the green region was assigned as malignant and the dark gray region was assigned as the background.

Fig. 5.
Fig. 5.

The semi-transparent version of the diagnostic image generated (a) by full spectra analysis overlaid on top of a representative image taken at (λexc = 440 nm, λemm = 540 nm) and (b) by synchronous spectra analysis (Δλ = 30 nm) overlaid on top of a representative image taken at (λexc = 540 nm, λemm = 570 nm). The method of analysis was shown in Fig. 3(a). The central green region was classified as malignant and the surrounding blue region was classified as normal, while the red region was the background.

Fig. 6.
Fig. 6.

The semi-transparent version of the diagnostic image generated (a) by analyzing the images of first ten key principal component (PC) scores calculated from full spectra data overlaid on top of a representative image taken at (λexc = 440 nm, λemm = 540 nm) and (b) by analyzing the images of all key PC scores calculated from a single set of synchronous spectra data (Δλ = 30 nm) overlaid on top of a representative image taken at (λexc = 540 nm, λemm = 570 nm). The method of analysis was shown in Fig. 3(b). The central green region was classified as malignant and the blue region was classified as normal, while the red region was the background.

Tables (2)

Tables Icon

Table 1. Specificities and sensitivities of classification using synchronous data calculated according to Eqs. (2) and (3), in which the diagnosis image generated from full spectra analysis [Fig. 5(a)] was used as the gold standard. Both sets of data were analyzed with the first method [Fig. 3(a)].

Tables Icon

Table 2. Specificities and sensitivities of classification using synchronous data calculated according to Eqs. (2) and (3), in which the diagnosis image generated from full spectra analysis [Fig. 6(a)] was used as the gold standard. Both sets of data were analyzed with the second method [Fig. 3(b)].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I s ( λ exc , λ emm ) = k E x ( λ exc ) i F E i ( λ exc , λ emm ) E M ( λ emm )
Specificity using synchronous data = Number of pixels classified as normal in both synchronous spectra analysis and full spectra analysis / Number of pixels classified as normal in full spectra analysis
Sensitivity using synchronous data = Number of pixels classified as malignant in both synchronous spectra analysis and full spectra analysis / Number of pixels classified as malignant in full spectra analysis

Metrics