Abstract

In this paper we investigate the use of active coated nano-particles (CNPs) for nano-sensing applications. Simulation results of the optical properties of an active CNP with a 24nm radius active silica core and 6nm thick plasmonic shell made of silver that has been functionalized by an additional spherical outer layer of varying thickness and refractive index are presented. In particular, the effects of the functional-layer thickness and refractive index on the super-resonant (SR) state of the active CNP are presented. It is shown that the wavelength and optical gain required to excite the SR state may provide both a spectral and a power signature usable for nano-scale sensing and that these signatures may be used to identify the dimensions and optical properties of the functional layer. These results are then applied to the case of a functional layer containing a solution of human hemoglobin. It is demonstrated that the concentration of hemoglobin may be remotely determined from these SR signatures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622 (2007).
    [CrossRef] [PubMed]
  2. J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  3. A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
    [CrossRef]
  4. L. R. Hirsch and A. M. Gobin, "Metal nanoshells," Ann. Biomed. Eng. 34, 15 (2006).
    [CrossRef] [PubMed]
  5. R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
    [CrossRef]
  6. J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001).
    [CrossRef]
  7. M. Friebel and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100nm dependent on concentration," Appl. Opt. 45,2838 (2006)
    [CrossRef] [PubMed]
  8. G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200-nm to 200-um Wavelength Region," Appl. Opt. 12,555 (1973).
    [CrossRef] [PubMed]
  9. J. A. Stratton, Electromagnetic Theory, (McGraw-Hill New York, 1941).
  10. A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951).
    [CrossRef]
  11. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  12. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370 (1972).
    [CrossRef]

2007 (1)

2006 (2)

2005 (1)

A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
[CrossRef]

2001 (1)

J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

1999 (2)

R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
[CrossRef]

J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
[CrossRef]

1973 (1)

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370 (1972).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Averitt, R. D.

R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370 (1972).
[CrossRef]

Drezek, R. A.

A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
[CrossRef]

Friebel, M.

Gauglitz, G

J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
[CrossRef]

Gobin, A. M.

L. R. Hirsch and A. M. Gobin, "Metal nanoshells," Ann. Biomed. Eng. 34, 15 (2006).
[CrossRef] [PubMed]

Gordon, J. A.

Halas, N. J

R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
[CrossRef]

Halas, N. J.

A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
[CrossRef]

J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

Hale, G. M.

Hirsch, L. R.

L. R. Hirsch and A. M. Gobin, "Metal nanoshells," Ann. Biomed. Eng. 34, 15 (2006).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
[CrossRef]

Jackson, J. B.

J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370 (1972).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Lin, A. W. H.

A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
[CrossRef]

Meinke, M.

Querry, M. R.

Westcott, S. L.

R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
[CrossRef]

Ziolkowski, R. W.

Ann. Biomed. Eng. (1)

L. R. Hirsch and A. M. Gobin, "Metal nanoshells," Ann. Biomed. Eng. 34, 15 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

J. Biomed. Opt. (1)

A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005).
[CrossRef]

J. Opt. Soc. Am. B. (1)

R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999).
[CrossRef]

J. Phys. Chem. B (1)

J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370 (1972).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. Yee, and G , Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3 (1999).
[CrossRef]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).

J. A. Stratton, Electromagnetic Theory, (McGraw-Hill New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

The index of refraction of water over the wavelength range from 250nm to 1100nm.

Fig. 2.
Fig. 2.

The index of refraction of hemoglobin solution for different concentrations of hemoglobin, CHb, over the wavelength range from 250nm to 1100nm.

Fig. 3.
Fig. 3.

Plane wave scattering from a multilayered sphere: For the active CNP the core region, defined by ε 1, μ 1, is an active material and the second layer, defined by ε 2, μ 2, is a plasmonic material. The outer third layer, defined by ε 3, μ 3, is the functional layer. The particle is immersed in a host medium, defined by ε 4, μ 4.

Fig. 4.
Fig. 4.

(a). Super resonant scattering from an active CNP, (b) Super resonant emission from an active CNP, (c) Absorption dominated scattering in a passive CNP.

Fig. 5.
Fig. 5.

Determining (a) the gain and (b) wavelength required to excite the super resonant state in the active CNP.

Fig. 6.
Fig. 6.

Trend of gain required to excite the super resonance as the index (left column) and thickness (right column) of the functional layer is varied.

Fig. 7.
Fig. 7.

The gain required to excite the super resonance state for a given functional layer thickness, t, in nanometers and index n=1.7, with the particle in air . The gain and thickness values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies.

Fig. 8.
Fig. 8.

The gain required to excite the super resonance state for a given functional layer thickness, t, in nanometers and index n=1.7, with the particle in water . The gain and thickness values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies.

Fig. 9.
Fig. 9.

The gain required to excite the super resonance state for a given functional layer index, n, and thickness, t=10nm, with the particle in air . The gain and index values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies.

Fig. 10.
Fig. 10.

The gain required to excite the super resonance state for a given functional layer index, n, and thickness, t=10nm, with the particle in water . The gain and index values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies

Fig. 11.
Fig. 11.

The gain required to excite the super resonance state for a given functional layer thickness in nanometers, t, and index n=1.7, as t → ∞ with the particle in water . The gain and thickness values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies.

Fig. 12.
Fig. 12.

The gain required to excite the super resonance state for a given functional layer index, n, and infinite thickness with the particle in water . The gain and index values associated with the super resonance state are given for the peaks of the (a) scattering and (b) absorption efficiencies.

Fig. 13.
Fig. 13.

Super resonance wavelength as the index of the functional layer is varied for thickness values of t=10nm for a particle in air (black) and in water (red), and for t → ∞ (green).

Fig. 14.
Fig. 14.

The gain required to excite the super resonance as the index of the functional layer is varied for thickness values of t=10nm for a particle in air (black) and in water (red), and for t → ∞ (green).

Fig. 15.
Fig. 15.

Super resonance wavelength as the thickness of the functional layer is varied for an index values of n 3 =1.7 for a particle in air (black) and in water (red).

Fig. 16.
Fig. 16.

The gain required to excite the super resonance as the index of the functional layer is varied for an index value of n 3 = 1.7 for a particle in air (black) and in water (red).

Fig. 17.
Fig. 17.

Super resonance wavelength as the concentration of hemoglobin, CHb, of the functional layer is varied for thickness values of t=10nm for a particle in water (red), and for t → ∞ (green).

Fig. 18.
Fig. 18.

The gain required to excite the super resonance as the concentration of hemoglobin, CHb, of the functional layer is varied for thickness values of t=10nm for a particle in water (red), and for t → ∞ (green).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n Hb ( λ , c Hb ) = n H 2 O ( λ ) [ β ( λ ) c Hb + 1 ]
E scat = E o n = 1 ( i ) n 2 n + 1 n ( n + 1 ) [ a n m o 1 n ( 3 ) ρ θ ϕ + i b n n e 1 n ( 3 ) ρ θ ϕ [
H scat = E o ε 4 μ 4 n = 1 ( i ) n 2 n + 1 n ( n + 1 ) [ b n m e 1 n ( 3 ) ρ θ ϕ i a n n o 1 n ( 3 ) ρ θ ϕ ]
σ scat = P scat I inc = 2 π κ 2 n ( 2 n + 1 ) ( a n 2 + b n 2 )
σ abs = P abs I inc = 2 π κ 2 n ( 2 n + 1 ) ( Re { a n } + a n 2 + Re { b n } + b n 2 )
σ ext = σ scat + σ abs
Q scat = σ scat π r 2
Q abs = σ abs π r 2
Q ext = Q scat + Q abs
ε ( ω , R ) = ε Drude ( ω , R ) + χ IntBand ( ω )
ε Drude ( ω , R ) = 1 ω p 2 Γ ( R ) 2 + ω 2 + i Γ ( R ) 2 ω p 2 ω ( Γ ( R ) 2 + ω 2 )
Γ ( R ) = Γ + A V F R
ε core = n 2 k 2 + i 2 kn

Metrics