Abstract

Whispering-gallery modes resonances of submicron wall thickness capillaries exhibit very large wavelength shifts as a function of the refractive index of the medium that fills the inside. The sensitivity to refractive index changes is larger than in other optical microcavities as microspheres, microdisks and microrings. The outer surface where total internal reflection takes place remains always in air, enabling the measure of refractive index values higher than the refractive index of the capillary material. The fabrication of capillaries with submicron wall thickness has required the development of a specific technique. A refractometer with a response higher than 390 nm per refractive index unit is demonstrated. These sensors are readily compatible with microfluidic systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes—Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
    [CrossRef]
  2. V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering-gallery modes—Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
    [CrossRef]
  3. A. Kiraz, A. Kurt, M. A. Dündar and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
    [CrossRef]
  4. M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  5. M. Hossein-Zadeh and K. J. Vahala, "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Opt. Express 15, 166-175 (2007).
    [CrossRef] [PubMed]
  6. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  7. C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  8. S. Y. Cho and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
    [CrossRef]
  9. A. Díez, M. V. Andrés and J. L. Cruz, "Hybrid surface plasma modes in circular metal-coated tapered fibers," J. Opt. Soc. Am. A 16, 2978-2982 (1999).
    [CrossRef]
  10. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  11. A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü and B. B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
    [CrossRef]
  12. Handbook of Chemistry and Physics, R. C. Weast, M. J. Astle and W. H. Beyer, ed. (CRC Press, Boca Raton 1986-1987), pp. E374-E375.
  13. I. M. White, H. Oveys and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  14. I. M. White, H. Oveys, X. Fan, T. L. Smith and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  15. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob and X. Fan, "Refractometric sensors for Lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
    [CrossRef]
  16. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989), Chap. 6.
  17. I. D. Chremmos, N. K. Uzunoglu and G. Kakarantzas, "Rigorous analysis of the coupling between two nonparallel optical fibers," J. Lightwave Technol. 24, 3779-3788 (2006).
    [CrossRef]
  18. R. P. Kenny, T. A. Birks and K. P. Oarkley, "Control of optical fibre taper shape," Electron. Lett. 27, 1654-1656 (1991).
    [CrossRef]
  19. J. C. Knight, G. Cheung, F. Jacques and T. A. Birks, "Phase-matched excitation of whispering-gallery mode rsonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  20. T. A. Birks, J. C. Knight and T. E. Dimmick, "High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment," IEEE Photon. Technol. Lett. 12, 182-183 (2000).
    [CrossRef]
  21. J. Carmon, L. Yang and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12, 4742-4750 (2004).
    [CrossRef] [PubMed]

2007

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob and X. Fan, "Refractometric sensors for Lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Opt. Express 15, 166-175 (2007).
[CrossRef] [PubMed]

2006

I. M. White, H. Oveys and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

I. D. Chremmos, N. K. Uzunoglu and G. Kakarantzas, "Rigorous analysis of the coupling between two nonparallel optical fibers," J. Lightwave Technol. 24, 3779-3788 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes—Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering-gallery modes—Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dündar and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

S. Y. Cho and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü and B. B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

2005

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

2004

2003

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

2000

T. A. Birks, J. C. Knight and T. E. Dimmick, "High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment," IEEE Photon. Technol. Lett. 12, 182-183 (2000).
[CrossRef]

1999

1997

1991

R. P. Kenny, T. A. Birks and K. P. Oarkley, "Control of optical fibre taper shape," Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

Appl. Phys. Lett.

A. Kiraz, A. Kurt, M. A. Dündar and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Electron. Lett.

R. P. Kenny, T. A. Birks and K. P. Oarkley, "Control of optical fibre taper shape," Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes—Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering-gallery modes—Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü and B. B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

T. A. Birks, J. C. Knight and T. E. Dimmick, "High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment," IEEE Photon. Technol. Lett. 12, 182-183 (2000).
[CrossRef]

S. Y. Cho and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

IEEE Sens. J.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob and X. Fan, "Refractometric sensors for Lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989), Chap. 6.

Handbook of Chemistry and Physics, R. C. Weast, M. J. Astle and W. H. Beyer, ed. (CRC Press, Boca Raton 1986-1987), pp. E374-E375.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Left) TMz WGM resonances wavelength of azimuthal order m=25 and radial order l, a=5 µm and d=1 µm, versus the internal refractive index (the dashed lines denote a Q factor lower than 500). (Right) Wavelength shift for both TMz (solid line) and TEz (dashed line) resonances of azimuthal order m=25, radial order l=1 and a=5 µm, for three values of the wall thickness (d=1.25, 1.00 and 0.75 µm), versus the internal refractive index.

Fig. 2.
Fig. 2.

SEM image of four capillaries: (a) a=76 µm, d=20 µm (example of a capillary before tapering), (b) a=9.9 µm, d=3.1 µm (example of a capillary tapered down without pressurization), (c) a=5.5 µm, d=0.8 µm (example of a submicron wall thickness capillary tapered with a pressure of 2 bar) and (d) a=7.5 µm, d=0.45 µm (another example of submicron wall thickness capillary tapered with a pressure of 2 bar). (e) Relative radius a/an versus the pressure applied to the capillary. (f) Normalized ratio η=d/a versus the relative radius a/an .

Fig. 3.
Fig. 3.

(Left) Scheme of the experimental arrangement. (Right) Transmission spectra for the TEz (top) and TMz (bottom) WGM resonances and for a refractive index of 1.52. Each resonance is identified with its azimuthal order m.

Fig. 4.
Fig. 4.

Calibration of WGM resonances as a function of the refractive index for two thin capillaries: (left) a=5.5 µm and d=0.8 µm and (right) a=4.5 µm and d=0.8 µm. TMz (top) and TEz (bottom) WGM resonances. Each resonance is identified with its azimuthal order m.

Fig. 5.
Fig. 5.

Transmission spectra for the TMz (left) and TEz (right) WGM resonances of a capillary with a=4.5 µm and d=0.8 µm, when it is filled with air (top) and with a liquid of high refractive index (bottom), n=1.7. Each resonance is identified with its azimuthal order m. The arrows point the second radial order resonances, l=2.

Metrics