Abstract

We report the fabrication and characterization of laterally continuous silver layers alternated with glassy amorphous polycarbonate films with the thickness of each layer much less than the wavelength. Such films exhibit physical phenomena associated with the coupled plasmon resonances. We have characterized light propagation through the resulting metal-dielectric (MD) periodic structures using collection mode Near Field Scanning Optical Microscopy (NSOM). In agreement with published theoretical models, our experiments provide evidence that diffraction can be inhibited for light propagating through metallodielectric nanolaminate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Opt. Express 12, 1823-1831 (2004).
    [CrossRef] [PubMed]
  2. M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl Phys B 81, 313 (2005).
    [CrossRef]
  3. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and ErichP. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93 (2006).
    [CrossRef] [PubMed]
  4. S. Feng and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt Express 14, 216 (2006);B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  5. O. Manela, M. Segev, and D. N. Christodoulides, "Nondiffracting beams in periodic media," Opt. Lett. 30, 2611 (2005).
    [CrossRef] [PubMed]
  6. G. Zuccarello, D. Scribner, R. Sands, L. J. Buckley, "Materials for bio-inspired optics," Adv. Mater. 14, 1261 (2002).
    [CrossRef]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  8. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt.,  50, 1419-1430 (2003);D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc Am. B,  23, 461-467 (2006);D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).
    [CrossRef]
  9. S. Kwon, P. Kim, W. Chang, and S. Jeong, "Fabrication of nano dot and line arrays using NSOM Lithography," Proceedings of 2nd International Symposium on Nanomanufacturing, pp.252-255, November 3-5 2004 Daejon Korea.
  10. M. J. Roberts, A. Guenthner, G. Lindsay, and S. Feng, "Fabrication of Multilayer Metal-Dielectric Nanofilms for Coupled Plasmon Resonant Devices", in Negative Index Materials -- From Microwave to Optical, S-Y. Wang, N.X. Fang, L. Thylen, and M.S. Islam, eds., Mater. Res. Soc. Symp. Proc. 919E, Warrendale, PA, 2006), 0919-J02-06.
  11. M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton 98-99, (1997).

2006 (2)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and ErichP. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93 (2006).
[CrossRef] [PubMed]

S. Feng and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt Express 14, 216 (2006);B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

2005 (2)

O. Manela, M. Segev, and D. N. Christodoulides, "Nondiffracting beams in periodic media," Opt. Lett. 30, 2611 (2005).
[CrossRef] [PubMed]

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl Phys B 81, 313 (2005).
[CrossRef]

2004 (1)

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt.,  50, 1419-1430 (2003);D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc Am. B,  23, 461-467 (2006);D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).
[CrossRef]

2002 (1)

G. Zuccarello, D. Scribner, R. Sands, L. J. Buckley, "Materials for bio-inspired optics," Adv. Mater. 14, 1261 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Adv. Mater. (1)

G. Zuccarello, D. Scribner, R. Sands, L. J. Buckley, "Materials for bio-inspired optics," Adv. Mater. 14, 1261 (2002).
[CrossRef]

Appl Phys B (1)

M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl Phys B 81, 313 (2005).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt.,  50, 1419-1430 (2003);D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc Am. B,  23, 461-467 (2006);D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).
[CrossRef]

Nat. Mater. (1)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and ErichP. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93 (2006).
[CrossRef] [PubMed]

Opt Express (1)

S. Feng and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt Express 14, 216 (2006);B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Other (3)

S. Kwon, P. Kim, W. Chang, and S. Jeong, "Fabrication of nano dot and line arrays using NSOM Lithography," Proceedings of 2nd International Symposium on Nanomanufacturing, pp.252-255, November 3-5 2004 Daejon Korea.

M. J. Roberts, A. Guenthner, G. Lindsay, and S. Feng, "Fabrication of Multilayer Metal-Dielectric Nanofilms for Coupled Plasmon Resonant Devices", in Negative Index Materials -- From Microwave to Optical, S-Y. Wang, N.X. Fang, L. Thylen, and M.S. Islam, eds., Mater. Res. Soc. Symp. Proc. 919E, Warrendale, PA, 2006), 0919-J02-06.

M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton 98-99, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of experimental setup. ‘A’ is NSOM cantilever, ‘B’ is microscope objective, and ‘C’ is metal-dielectric nanolaminate.

Fig. 2.
Fig. 2.

(a). AFM image of positive photoresist surface patterned using NSOM lithography. Scan size is 10 µm×10 µm. (b) Tapping Mode AFM of APC/Ag/APC/Ag film over aperture. Scan size is 10 µm×10 µm. (c) SEM of APC/Ag/APC/Ag/APC/Ag/APC cross-section. The overall thickness of the nanolaminate is measured between the two horizontal green lines. Scale bar is 200 nm.

Fig. 3.
Fig. 3.

NSOM collection mode image of an ‘H’-shaped aperture through a titanium film. Aperture is illuminated with 488 nm light from below at the focal plane of microscope objective. Scan size is 10 µm×10 µm.

Fig. 4.
Fig. 4.

Evidence for inhibition of light diffraction. (a) NSOM collection mode image scanned in air, 500 nm above aperture; (b) scanned at surface of metal-dielectric stack, 560 nm from aperture. Scan size is 10 µm×10 µm.

Fig. 5.
Fig. 5.

Series of NSOM scans as a function of propagation distance from the aperture. All images are 10 µm×10 µm.

Tables (1)

Tables Icon

Table 1. Comparison of diffusion in each image of Fig. 5. quantified by width of normalized light intensity.

Metrics