Abstract

In this contribution, different measurement noise pre-filtering techniques were developed using frequency-domain fluorescence measurements of homogeneous breast phantoms. We demonstrated that implementing noise pre-filtering, based on modulation depth and measurement error in amplitude, can improve model match between experimental and simulated data under varying experimental conditions (target depths, 1–3 cm and fluorescence optical contrast, 1:0 and 100:1). Noise pre-filtering also improves the qualitative estimation of target(s) location in reconstructed images in deep target(s) when there was fluorescence in the background. Interestingly, decreases in model mismatch did not necessarily correlate with increases in reconstructed target accuracy. In addition, it was observed that pre-filtering measurement noise using different criteria can help differentiate target(s) from artifacts, thus possibly minimizing the false-positive cases in a clinical environment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: Initial clinical results," Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
    [CrossRef] [PubMed]
  2. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
    [CrossRef]
  3. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, "Contrast features of breast cancer in frequency-domain laser scanning mammography," J. Biomed. Opt. 3, 129-136 (1998).
    [CrossRef]
  4. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
    [CrossRef]
  5. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, "Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection," IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
    [CrossRef]
  6. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
    [PubMed]
  7. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
    [CrossRef]
  8. A. Li, G. Boverman, Y. Zhang, D. Brooks, E.L. Miller, M.E. Kilmer, Q. Zhang, E.M. Hillman, and D.A. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
    [CrossRef] [PubMed]
  9. Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, and D.A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 24033(2005).
    [CrossRef]
  10. A.P. Gibson, J.C. Hebden, and S.R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
    [CrossRef] [PubMed]
  11. V. Ntziachristos, C.-H. Tung, C. Bremer, and Weissleder , "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  12. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  13. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
    [CrossRef] [PubMed]
  14. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef] [PubMed]
  15. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004).
    [CrossRef] [PubMed]
  16. A. Godavarty, C. Zhang, M. J. Eppstein, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries," Med. Phys. 31, 183-190 (2004).
    [CrossRef] [PubMed]
  17. A. Godavarty, E. M. Sevick-Muraca, M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
    [CrossRef] [PubMed]
  18. Y. Chen, X. Intes, B. Chance, "Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection," Biomed. Instrum. Technol.,  39, 75-85 (2005).
    [PubMed]
  19. Z. Sun, Y. Huang, E. M. Sevick-Muraca, "Precise analysis of frequency domain migration measurement forcharacterization of concentrated colloidal suspensions, Sci. Instrum. 73, 383-393(2002)
    [CrossRef]
  20. O. C. Zeinkiewicz, and R. L. Taylor. The Finite Element Methods In Engineering Science (McGraw-Hill, New York, 1989).
  21. J. N. Reddy. An Introduction to the Finite Element Method 2ed. (McGraw-Hill, New York, 1993).
  22. M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, "Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements", Appl. Opt.,  38:2138-2150 (1999).
    [CrossRef]
  23. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,‘‘Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,’’Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002).
    [CrossRef] [PubMed]

2005

Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, and D.A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 24033(2005).
[CrossRef]

A.P. Gibson, J.C. Hebden, and S.R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

A. Godavarty, E. M. Sevick-Muraca, M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

Y. Chen, X. Intes, B. Chance, "Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection," Biomed. Instrum. Technol.,  39, 75-85 (2005).
[PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E.L. Miller, M.E. Kilmer, Q. Zhang, E.M. Hillman, and D.A. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

2004

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004).
[CrossRef] [PubMed]

A. Godavarty, C. Zhang, M. J. Eppstein, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries," Med. Phys. 31, 183-190 (2004).
[CrossRef] [PubMed]

2003

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

2002

V. Ntziachristos, C.-H. Tung, C. Bremer, and Weissleder , "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,‘‘Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,’’Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

2001

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
[CrossRef]

1999

1998

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, "Contrast features of breast cancer in frequency-domain laser scanning mammography," J. Biomed. Opt. 3, 129-136 (1998).
[CrossRef]

1997

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: Initial clinical results," Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Instrum. Technol.

Y. Chen, X. Intes, B. Chance, "Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection," Biomed. Instrum. Technol.,  39, 75-85 (2005).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, "Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection," IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

IEEE Trans. Med. Imaging

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
[CrossRef]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004).
[CrossRef] [PubMed]

Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, and D.A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 24033(2005).
[CrossRef]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, "Contrast features of breast cancer in frequency-domain laser scanning mammography," J. Biomed. Opt. 3, 129-136 (1998).
[CrossRef]

Med. Phys.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

A. Godavarty, C. Zhang, M. J. Eppstein, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries," Med. Phys. 31, 183-190 (2004).
[CrossRef] [PubMed]

A. Godavarty, E. M. Sevick-Muraca, M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

Nat. Med.

V. Ntziachristos, C.-H. Tung, C. Bremer, and Weissleder , "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol.

A.P. Gibson, J.C. Hebden, and S.R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: Initial clinical results," Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,‘‘Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,’’Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Radiology

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Other

Z. Sun, Y. Huang, E. M. Sevick-Muraca, "Precise analysis of frequency domain migration measurement forcharacterization of concentrated colloidal suspensions, Sci. Instrum. 73, 383-393(2002)
[CrossRef]

O. C. Zeinkiewicz, and R. L. Taylor. The Finite Element Methods In Engineering Science (McGraw-Hill, New York, 1989).

J. N. Reddy. An Introduction to the Finite Element Method 2ed. (McGraw-Hill, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the instrumentation set-up of the FDPM-ICCD imaging system

Fig. 2.
Fig. 2.

Frequency domain model of data acquisition. AC is the amplitude of the modulation and DC is the average intensity, where the subscripts s and d denotes the source (solid line) and detector (dashed line), respectively. θ represents the phase shift between the two signals.

Fig. 3.
Fig. 3.

Correlations of different measurement parameters from experimental measurements of homogenous phantoms. Here SD represents source-detector distance MD is the modulation depth; and SDNA represents the standard deviation of normalized amplitude. (a) Logarithm of modulation depth vs SD distance, (b) Phase shift vs SD distance, (c) Phase shift from simulated studies vs SD distance, (d) Standard deviation of normalized phase shift vs SD distance, (e) Standard deviation of normalized amplitude (SDNA) vs SD distance, and (f) SDNA vs logarithm of modulation depth.

Fig. 4.
Fig. 4.

Variances of model mismatch error in (a) ln(ACR) and (b) RPS for different target depths (1.4, 2.0, 2.8 cm) with 1:0 absorption optical contrast ratio under different pre-filtering techniques.

Fig. 5.
Fig. 5.

Variances of model mismatch error in (a) ln(ACR) and (a) RPS for different target depths (1.4, 2.0, and 2.8 cm) with 100:1 absorption optical contrast ratio under different pre-filtering techniques.

Fig. 6.
Fig. 6.

Anterior (x-y) and lateral views of reconstructed images of the breast phantom under perfect uptake case (1:0) and target located 2.8 cm deep obtained using different noise pre-filtering techniques: (a) no cut-off, (b) PFT-1, (c) PFT-2, and (d) PFT-3. The size of red ‘+’ symbols is directly proportional to the intensity of the reconstructed parameter µaxf . The green pane indicates the true location of the targets

Fig. 7.
Fig. 7.

Anterior (x-y) and lateral views of reconstructed images of the breast phantom under imperfect uptake case (100:1) and target located 2.8 cm deep obtained using different noise pre-filtering techniques: (a) no cut-off, (b) PFT-1, (c) PFT-2, and (d) PFT-3. The size of red ‘+’ symbols is directly proportional to the intensity of the reconstructed parameter µaxf . The green pane indicates the true location of the targets.

Tables (4)

Tables Icon

Table 1 Optical properties of the background phantom during the homogeneous phantom study

Tables Icon

Table 2 Optical properties of target and background for different contrast ratio experiments and for all the target depth studies.

Tables Icon

Table 3 Quantitative analysis of reconstructed target using different noise pre-filtering techniques for the perfect uptake case (1:0)

Tables Icon

Table 4 Quantitative analysis of reconstructed target using different noise pre-filtering techniques for the imperfect uptake case (100:1)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x ¯ = n = 1 5 x n
σ = n = 1 5 ( x n x ¯ ) 2 5 1
ACR error = ln ( ACR ) exp ln ( ACR ) sim
RPS error = RPS exp RPS sim

Metrics