Abstract

Abstract

This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag. 6, 356 (1928).
  3. E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972).
    [CrossRef] [PubMed]
  4. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  5. U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
    [CrossRef]
  6. L. Novotny, D. Pohl, and B. Hecht, "Scanning near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Opt. Lett. 20, 970-972 (1995).
    [CrossRef] [PubMed]
  7. J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007).
    [CrossRef]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  9. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
    [CrossRef] [PubMed]
  11. F. J. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475-1484 (2002)
    [PubMed]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  13. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced Confined Light Transmission by Single Subwavelength Apertures in Metallic Films," Appl. Opt. 42, 6811-6815 (2003).
    [CrossRef] [PubMed]
  14. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  15. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994).
    [CrossRef]
  16. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
    [CrossRef]
  17. K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
    [CrossRef]
  18. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys . 98, 011101-1-10 (2005).
    [CrossRef]
  19. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  20. T. J. Antosiewicz and T. Szoplik, "Description of near- and far-field light emitted from a metal-coated tapered fiber tip," Opt. Express 15, 7845-7852 (2007).
    [CrossRef] [PubMed]
  21. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
    [CrossRef]
  22. K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006).
    [CrossRef] [PubMed]
  23. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  24. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
    [CrossRef]
  25. W. Nakagawa, L. Vaccaro, and H.P. Herzig, "Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes," J. Opt. Soc. Am. A 23, 1096-1105 (2006).
    [CrossRef]
  26. Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
    [CrossRef]
  27. W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
    [CrossRef]
  28. S.T. Huntington, B.C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J.D. Love, and V. Steblina, "A fractal-based fibre for ultra-high throughput optical probes," Opt. Express 15, 2468-2475 (2007).
    [CrossRef] [PubMed]
  29. C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995).
    [CrossRef]
  30. A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
    [CrossRef]
  31. T. Szoplik, W. M. Saj, J. Pniewski, and T.J. Antosiewicz, "Transmission of radially polarized light beams through nanoholes," Abstracts of the EOS Topical Meeting on Nanophotonics, Metamaterials and Optical Microcavities, 16-19 October 2006, Paris, France.
  32. A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
    [CrossRef]
  33. W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005).
    [CrossRef] [PubMed]
  34. C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).
  35. P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  36. N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]

2007

J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

S.T. Huntington, B.C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J.D. Love, and V. Steblina, "A fractal-based fibre for ultra-high throughput optical probes," Opt. Express 15, 2468-2475 (2007).
[CrossRef] [PubMed]

T. J. Antosiewicz and T. Szoplik, "Description of near- and far-field light emitted from a metal-coated tapered fiber tip," Opt. Express 15, 7845-7852 (2007).
[CrossRef] [PubMed]

2006

K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006).
[CrossRef] [PubMed]

W. Nakagawa, L. Vaccaro, and H.P. Herzig, "Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes," J. Opt. Soc. Am. A 23, 1096-1105 (2006).
[CrossRef]

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

2005

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005).
[CrossRef] [PubMed]

2004

A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
[CrossRef]

A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
[CrossRef]

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced Confined Light Transmission by Single Subwavelength Apertures in Metallic Films," Appl. Opt. 42, 6811-6815 (2003).
[CrossRef] [PubMed]

2002

F. J. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475-1484 (2002)
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

2000

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1995

L. Novotny, D. Pohl, and B. Hecht, "Scanning near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Opt. Lett. 20, 970-972 (1995).
[CrossRef] [PubMed]

C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995).
[CrossRef]

1994

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994).
[CrossRef]

1986

U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

1972

E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1944

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

1928

E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag. 6, 356 (1928).

Andrews, S.R.

W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Antosiewicz, T. J.

Ash, E. A.

E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Baida, F. I.

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Canning, J.

Cho, Y. K.

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Digweed-Lyytikäinen, K.

Ding, W.

W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Drezet, A.

A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
[CrossRef]

Dürig, U.

U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
[CrossRef]

Durkan, C.

A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Gademann, A.

A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
[CrossRef]

Garcia de Abajo, F. J.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Gerton, J.M.

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gibson, B.C.

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Guizal, B.

Hafner, C.

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994).
[CrossRef]

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

L. Novotny, D. Pohl, and B. Hecht, "Scanning near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Opt. Lett. 20, 970-972 (1995).
[CrossRef] [PubMed]

Herzig, H.P.

Huant, S.

A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
[CrossRef]

Huntington, S.T.

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Karrai, K.

C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995).
[CrossRef]

Kim, J. H.

J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

Kim, K. Y.

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

Lalanne, P.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lee, J. H.

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Love, J.D.

Ma, Z.

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

Maier, S.A.

W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Nakagawa, W.

Nerkararyan, K. V.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Nichols, G.

E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, D. Pohl, and B. Hecht, "Scanning near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Opt. Lett. 20, 970-972 (1995).
[CrossRef] [PubMed]

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994).
[CrossRef]

Obermüller, C.

C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995).
[CrossRef]

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pohl, D.

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Pohl, D.W.

U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
[CrossRef]

Quake, S.R.

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

Rohner, F.

U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
[CrossRef]

Saj, W.

Shvets, I.V.

A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Song, K. B.

J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

Steblina, V.

Stockman, M. I.

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Sugiyama, T.

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Synge, E. H.

E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag. 6, 356 (1928).

Szoplik, T.

Tae, H. S.

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

Tanaka, K.

Tanaka, M.

Thio, T.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Vaccaro, L.

Van Labeke, D.

Wade, L.A.

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

Woehl, J. C.

A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
[CrossRef]

Wolff, P.A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

J. Appl. Phys.

U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986).
[CrossRef]

A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004).
[CrossRef]

J. Lumin.

A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Micron

J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Opt. Commun.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phil. Mag.

E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag. 6, 356 (1928).

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. A

W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Phys. Rev. B

P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. E

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994).
[CrossRef]

Phys. Rev. Lett.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006).
[CrossRef]

Rev.

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Other

C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).

T. Szoplik, W. M. Saj, J. Pniewski, and T.J. Antosiewicz, "Transmission of radially polarized light beams through nanoholes," Abstracts of the EOS Topical Meeting on Nanophotonics, Metamaterials and Optical Microcavities, 16-19 October 2006, Paris, France.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys . 98, 011101-1-10 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Modeled tip structures without corrugations a), with semicircular b) and rounded rectangular c) corrugations. Colors indicate: glass core-dark red, metal coating-green, vacuum-blue. The pictures show, because of clarity, only the symmetrically cut, narrow end of the tips. The metal layer is chosen so that no simulated silver pixel is farther than 70 nm from the glass core. Structures will have the following labels: a) smooth tip, b) tip with semicircular grooves, c) tip with rounded rectangular grooves.

Fig. 2.
Fig. 2.

Transmission of analyzed tips: a) absolute, and b) normalized to smooth tip transmission, calculated in the plane 10 nm outside the tip end.

Fig. 3.
Fig. 3.

FWHM of the beams emitted by the analyzed tips calculated in the plane 10 nm outside the tip end.

Fig. 4.
Fig. 4.

Intensity distributions for wavelengths λ=450 nm (a, c, and e) and 480 nm (b, d, and f) in three considered types of tips averaged over the wave period. The white outline marks the boundary of the metal coating.

Fig. 5.
Fig. 5.

Intensity distributions for wavelengths λ=510 nm (a, c, and e) and 540 nm (b, d, and f) in three considered types of tips averaged over the wave period. The white outline marks the boundary of the metal coating.

Fig. 6.
Fig. 6.

The black line indicates the location of the cutoff diameter with respect to the tip end for different wavelengths. Locations of the rising slopes (colored blue and green in inlets) of the first corrugations from the tip end. The blue and green lines represents the position of semicircular and rectangular metal ridges with respect to the tip end.

Fig. 7.
Fig. 7.

Intensity profiles in the plane 10 nm outside the tip end calculated for three types of probes at wavelengths a) 450 nm, b) 480 nm, c) 510 nm and d) 540 nm. Within each subfigure plots are normalized with respect to the maximum point intensity of the smooth tip radiation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ ( r , ϕ ) cos ( N ϕ ) cos ( ω t ) δ ( r R )
ε ( ω ) = ε ω p 2 [ ω ( ω + i Γ ) ] .

Metrics