Abstract

We show in this paper that the contrast of the interface between resonant and nonresonant media imaged in Coherent anti-Stokes Raman scattering (CARS) microscopy strongly depends on the pump and Stokes fields spectral detuning. More specifically, when this detuning drives the vibrational resonance with the maximum phase difference, a spatial dip appears at the interface in the CARS image. This effect is studied both theoretically and experimentally and is an evidence of the coherent and resonant nature of the CARS contrast mechanism.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Zumbusch, G. R. Holtom and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  2. M. D. Duncan, J. Reintjes and T. J. Manuccia, "Scanning coherent anti-Stokes Raman scattering microscope," Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  3. A. Volkmer, J.-X. Cheng and X. S. Xie, "Vibrational imaging with high sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  4. J.-X. Cheng, A. Volkmer and X. S. Xie, "Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy," J. Opt. Soc. Am. A 19, 1363-1375 (2002).
    [CrossRef]
  5. E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
    [CrossRef]
  6. D. Oron, N. Dudovich and Y. Silberberg, "Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001 (2002).
    [CrossRef]
  7. M. Greve, B. Bodermann, H. R. Telle, P. Baum and E. Riedle, "High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy," Appl. Phys. B 81, 875-879 (2005).
    [CrossRef]
  8. H. Kano and H. Hamaguchi, "Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. B 80, 243-246 (2005).
    [CrossRef]
  9. J.-X. Cheng, Y. K. Jia, G. Zheng and X. S. Xie, "Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology," Biophys. J. 83, 502-509 (2002).
    [CrossRef] [PubMed]
  10. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based mutiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005).
    [CrossRef] [PubMed]
  11. H. Kano and H. Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Opt. Express 14,2798-2804 (2006).
    [CrossRef] [PubMed]
  12. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne and H. Rigneault, "Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," Appl. Opt. 45, 7005-7011 (2006).
    [CrossRef] [PubMed]
  13. S. A. J. Druet, B. Attal, T. K. Gustafson and J. P. Taran, "Electronic resonance enhancement of coherent anti-Stokes Raman scattering," Phys. Rev. A 18, 1529-1557 (1978).
    [CrossRef]
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).
  15. M. D. Levenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. A 10, 4447-4463 (1974).
  16. H. Lotem, R. T. Lynch, Jr and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
    [CrossRef]
  17. J. W. Fleming and C. S. Johnson Jr., "A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra," J. Raman Spectrosc. 8, 284-290 (1979).
    [CrossRef]
  18. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990).
  19. Spectral Database for Organic Compounds SDBS, http://www.aist.go.jp/RIODB/SDBS>.
  20. D. Gachet, N. Sandeau and H. Rigneault, "Far-field radiation pattern in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," Proc. SPIE 6093, 609309 (2006).
  21. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Roy. Soc. of London Proc. Series A 253, 358-379 (1959).
    [CrossRef]
  22. D. Gachet, N. Sandeau and H. Rigneault, "Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy," J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013>.
    [CrossRef]
  23. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
    [CrossRef]
  24. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced Polarization Third Order in the Electric Field Strength," Phys. Rev. 137, 801-818 (1965).
    [CrossRef]
  25. G. W. H. Wurpel, J. M. Schins and M. Müller, "Chemical specificity in three-dimensional imaging with Multiplex Coherent Anti-Stokes Raman Scattering Microscopy," Opt. Lett. 27, 1093-1095 (2002).
    [CrossRef]
  26. J.-X. Cheng, A. Volkmer, L. D. Book and X. S. Xie, "Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
    [CrossRef]
  27. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, "Direct extraction of Raman line-shapes from congested CARS spectra," Opt. Express 14, 3622-3630 (2006).
    [CrossRef] [PubMed]

2006 (4)

2005 (3)

H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based mutiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005).
[CrossRef] [PubMed]

M. Greve, B. Bodermann, H. R. Telle, P. Baum and E. Riedle, "High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy," Appl. Phys. B 81, 875-879 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, "Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. B 80, 243-246 (2005).
[CrossRef]

2003 (1)

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

2002 (6)

D. Oron, N. Dudovich and Y. Silberberg, "Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng and X. S. Xie, "Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer and X. S. Xie, "Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy," J. Opt. Soc. Am. A 19, 1363-1375 (2002).
[CrossRef]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
[CrossRef]

G. W. H. Wurpel, J. M. Schins and M. Müller, "Chemical specificity in three-dimensional imaging with Multiplex Coherent Anti-Stokes Raman Scattering Microscopy," Opt. Lett. 27, 1093-1095 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book and X. S. Xie, "Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

2001 (1)

A. Volkmer, J.-X. Cheng and X. S. Xie, "Vibrational imaging with high sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1982 (1)

1979 (1)

J. W. Fleming and C. S. Johnson Jr., "A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra," J. Raman Spectrosc. 8, 284-290 (1979).
[CrossRef]

1978 (1)

S. A. J. Druet, B. Attal, T. K. Gustafson and J. P. Taran, "Electronic resonance enhancement of coherent anti-Stokes Raman scattering," Phys. Rev. A 18, 1529-1557 (1978).
[CrossRef]

1976 (1)

H. Lotem, R. T. Lynch, Jr and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

1974 (1)

M. D. Levenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. A 10, 4447-4463 (1974).

1965 (1)

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced Polarization Third Order in the Electric Field Strength," Phys. Rev. 137, 801-818 (1965).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Roy. Soc. of London Proc. Series A 253, 358-379 (1959).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Greve, B. Bodermann, H. R. Telle, P. Baum and E. Riedle, "High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy," Appl. Phys. B 81, 875-879 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, "Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. B 80, 243-246 (2005).
[CrossRef]

Biophys. J. (1)

J.-X. Cheng, Y. K. Jia, G. Zheng and X. S. Xie, "Laser-scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J.-X. Cheng, A. Volkmer and X. S. Xie, "Theoretical and experimental characterization of Anti-Stokes Raman Scattering Microscopy," J. Opt. Soc. Am. A 19, 1363-1375 (2002).
[CrossRef]

J. Phys. Chem. B (1)

J.-X. Cheng, A. Volkmer, L. D. Book and X. S. Xie, "Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles," J. Phys. Chem. B 106, 8493-8498 (2002).
[CrossRef]

J. Raman Spectrosc. (2)

J. W. Fleming and C. S. Johnson Jr., "A practical analysis for coherent anti-stokes Raman scattering (CARS) spectra," J. Raman Spectrosc. 8, 284-290 (1979).
[CrossRef]

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes-Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced Polarization Third Order in the Electric Field Strength," Phys. Rev. 137, 801-818 (1965).
[CrossRef]

Phys. Rev. A (3)

M. D. Levenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. A 10, 4447-4463 (1974).

H. Lotem, R. T. Lynch, Jr and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

S. A. J. Druet, B. Attal, T. K. Gustafson and J. P. Taran, "Electronic resonance enhancement of coherent anti-Stokes Raman scattering," Phys. Rev. A 18, 1529-1557 (1978).
[CrossRef]

Phys. Rev. Lett. (3)

D. Oron, N. Dudovich and Y. Silberberg, "Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng and X. S. Xie, "Vibrational imaging with high sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Proc. SPIE (1)

D. Gachet, N. Sandeau and H. Rigneault, "Far-field radiation pattern in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," Proc. SPIE 6093, 609309 (2006).

Roy. Soc. of London Proc. Series A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system," Roy. Soc. of London Proc. Series A 253, 358-379 (1959).
[CrossRef]

Other (4)

D. Gachet, N. Sandeau and H. Rigneault, "Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy," J. Eur. Opt. Soc. - Rapid Publications 1, 06013 (2006), https://www.jeos.org/index.php/jeos rp/article/view/06013>.
[CrossRef]

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambride University Press, 1990).

Spectral Database for Organic Compounds SDBS, http://www.aist.go.jp/RIODB/SDBS>.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical CARS spectra of an isolated Raman line (a), representation of the χ (3) O tensor phase as a function of the normalized Raman resonance detuning (b) and representation of χ (3) O in the complex plane (c), for different values of the η parameter. OR 1: Off- Raman resonance; P: Peak CARS resonance; RP: Raman Peak resonance; PM: phase maximum; D: CARS spectral dip; OR 2: Off-Raman resonance.

Fig. 2.
Fig. 2.

Theoretical scans of an interface between an object (Obj.) and its nonresonant surrounding (Sur.) for different Raman detunings: black: peak (P); red: dip (D); blue: phase maximum (PM); green: off-resonance (OR). The object resonance is defined by η=1.49. (a)–(b) 1D model: the interface separates two infinite media. The scan position is normalized with respect to the excitation spatial width λ. (c)–(d) 3D model: the interface separates a 6 µm diameter bead from its surrounding. The CARS intensity is normalized with respect to its value in the surrounding.

Fig. 3.
Fig. 3.

CARS microscopy set-up. F: filter; BS: beam splitter; BC: beam combiner; LE and LF : lenses; C: condenser (NA =0.5).

Fig. 4.
Fig. 4.

Experimental CARS spectra of a 6 µm diameter polystyrene bead (red) and aqueous solution used experimentally (blue). The pump wavelength is fixed to 730.3 nm. The pump and Stokes powers equal 500 µW and 300 µW respectively.

Fig. 5.
Fig. 5.

Two- and one-dimensional scan of a 6.2 µm diameter polystyrene bead embedded in aqueous solution around the 1003 cm-1 polystyrene resonance. The pump and Stokes powers both equal 500 µW. Bead images (a) on-resonance and (b) off-resonance. The one-dimensional scans are performed along the dashed white lines and are all normalized with respect to the aqueous solution CARS intensity. The pump and Stokes beams linear polarizations are indicated by the white arrows. (c) One-dimensional scans performed along the dashed lines for various Raman resonance detuning and (d) for phase maximum (green), around the second peak (red and blue) and off-resonance (black) only. (e) Spectral positions corresponding to the scans depicted on (c) and associated normalized dip amplitude (bright grey: left dip; dark grey: right dip).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ R ( 3 ) + χ NR ( 3 ) .
χ R ( 3 ) = a ( ω p ω s Ω R ) + i Γ .
χ O ( 3 ) = χ O , R ( 3 ) + χ O , N R ( 3 ) .
δ ω = ω p ω s , ζ = ( δ ω Ω R ) Γ , η = 2 Γ χ O , N R ( 3 ) a .
χ O ( 3 ) ( ζ , η ) = χ O , N R ( 3 ) η ( ζ 2 + 1 ) [ η ( ζ 2 + 1 ) 2 ζ + 2 i ]
χ O ( 3 ) ( ζ , η ) = ρ ( ζ , η ) exp [ i ϕ ( ζ , η ) ]
ρ ( ζ , η ) = χ O , N R ( 3 ) [ 1 + 4 1 η ζ η ( ζ 2 + 1 ) ] 1 2 , tan [ ϕ ( ζ , η ) ] = 2 η ( ζ 2 + 1 ) 2 ζ .
C = ( χ O , N R ( 3 ) ; χ O , N R ( 3 ) η ) , r = χ O , N R ( 3 ) η = a 2 Γ .
η = 2 ( R P D ) 1 4 ( R P D ) 1 2 1 .
P ( 3 ) ( r , ω as ) = χ ( 3 ) ( ω as ; ω p , ω p , ω s ) E p ( r , ω p ) : E p ( r , ω p ) : E s * ( r , ω s )
m ( x ) = { ρ O ( ζ , η ) . exp [ i ϕ O ( ζ , η ) ] if x < 0 ρ S if x 0 , g ( x ) = { 1 λ if x < λ 2 0 if x λ 2 .
I CARS ( x ) = { ρ O 2 if x λ 2 [ ρ O 2 + ρ S 2 2 ρ O ρ S · cos ( ϕ O ) ] ( x λ ) 2 + ( ρ O 2 ρ S 2 ) x λ + 1 4 [ ρ O 2 + ρ S 2 + 2 ρ O ρ S · cos ( ϕ O ) ] if x < λ 2 ρ S 2 if x λ 2 .
cos ( ϕ O ) < min ( ρ S ρ O ; ρ O ρ S )

Metrics