Abstract

In clinical applications, three-dimensional (3-D) microscopic image volume reveals tissue morphological changes, which are closely related to pre-cancer and early stage disease, much better than two-dimensional images. However, the traditional endoscope only achieves two-dimensional surface images. In this paper, a 3-D endoscopic microscope was developed based on a rotational microelectromechanical system (MEMS) probe [1]. The 3-D helix scan mode was realized by combining a MEMS motor rotational scan and linear stage transversal movement. In order to coordinate the high spin speed of MEMS motor inside the endoscope, an optical coherence tomography (OCT) system with a broadband fast swept laser was used. In vivo 3-D image volumes of rabbit esophagus and trachea were demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  3. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543 (1996).
    [CrossRef] [PubMed]
  4. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12, 3532-3542 (2004).
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429 - 1433 (2006).
    [CrossRef] [PubMed]
  6. S. Di Pietro, P. G. Arcidiacono, B. Mangiavillano, A. Mariani, P. A. Testoni, E. Masci," Intraductal Optical Coherence Tomography for investigating main Pancreatic Duct Strictures," Am. J. Gastroenterol. 102, 269-274 (2007).
    [CrossRef]
  7. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  8. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  9. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequencydomain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  10. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  12. B. Cense, N. Nassif, T. Chen, M. Pierce, S. -H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]

2007

S. Di Pietro, P. G. Arcidiacono, B. Mangiavillano, A. Mariani, P. A. Testoni, E. Masci," Intraductal Optical Coherence Tomography for investigating main Pancreatic Duct Strictures," Am. J. Gastroenterol. 102, 269-274 (2007).
[CrossRef]

2006

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429 - 1433 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

2005

2004

2003

1997

1996

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Am. J. Gastroenterol.

S. Di Pietro, P. G. Arcidiacono, B. Mangiavillano, A. Mariani, P. A. Testoni, E. Masci," Intraductal Optical Coherence Tomography for investigating main Pancreatic Duct Strictures," Am. J. Gastroenterol. 102, 269-274 (2007).
[CrossRef]

Nat. Med.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429 - 1433 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt.Lett.

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (3679 KB)     
» Media 2: AVI (3022 KB)     
» Media 3: AVI (2566 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of 3-D MEMS motor-based endoscope.

Fig. 2.
Fig. 2.

Endoscope in 3-D working mode. The whole endoscope moves from left to right. The red dots indicate the output beam orientation reflected by the microprism.

Fig. 3.
Fig. 3.

The fiber-based swept source OCT system setup: fixed mirror and attenuator work as the reference arm; MEMS motor rotates the microprism inside the endoscope while the outside stage pulls the whole endoscope. Balanced detection is used to increase SNR.

Fig. 4.
Fig. 4.

(a) Three-dimensional rebuilt image of rabbit esophagus which was 6 mm long; the movie shows the different angle of the three-dimensional rebuilt volume [Media 1]. (b) One cross-sectional slice pulled out from (a) [Media 2]; the movie shows the whole slices set sequentially. (c) The transversal image unwrapped from (b) whose size was 9.86 mm by 1.85 mm. (d) The histology image at corresponding position of (c). (e=epithelium; lp=lamina propria; mm=muscularis mucosae; sm=submucosa; ext=muscularis externa.)

Fig. 5.
Fig. 5.

(a) Three-dimensional rebuilt image of rabbit trachea which was 6 mm long; the trachea ring is visible in the middle part. (b) One cross-sectional slice pulled out from (a); the movie shows the whole slices set sequentially [Media 3]. (c) A longitudinal cross-sectional image rebuilt from 3-D image volume; the image size was 6 mm by 1.3 mm. (d) The histology image at corresponding position of (c). (e=epithelium; lp=lamina propria; c=cartilage; sm=submucosa; tm=trachealis muscle.)

Metrics