Abstract

LED-based multi-wavelength phase imaging interference microscopy combines phase-shifting interferometry with multi-wavelength optical phase unwrapping. This technique consists of a Michelson-type interferometer illuminated with a LED. The reference mirror is dithered for obtaining interference images at four phase quadratures, which are then combined to calculate the phase of the object surface. The 2π ambiguities are removed by repeating the experiment using two or more LEDs at different wavelengths, which yields phase images of effective wavelength much longer than the original. The resulting image is a profile of the object surface with a height resolution of several nanometers and range of several microns. The interferographic images using broadband sources are significantly less affected by coherent noise.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Barone-Nugent, A. Barty, K. A. Nugent, "Quantitative phase amplitude microscopy I: optical microscopy," J. Microscopy 3, 194-203 (2002).
    [CrossRef]
  2. C. J. Mann, L. Yu, C. Lo and M. K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  3. P. Marquet, B. Rappaz, T. Colomb, F. Charriere, J. Kuhn, Y. Emery, E. Cuche, C. Depeursinge, P. Magistretti, " Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics," Proc. SPIE 6191, 61910U-61910U5 (2006).
    [CrossRef]
  4. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari and M. S. Feld, "Diffraction phase and fluorescence microscopy," Opt. Express 14, 8263-8268 (2006).
    [CrossRef] [PubMed]
  5. M. Servin, J.L. Marroquin, D. Malacara and F.J. Cuevas, "Phase unwrapping with a regularized phase-tracking system," Appl. Opt. 37, 1917-1923 (1998).
    [CrossRef]
  6. Yeou-Yen Cheng and James C. Wyant, "Multiple-wavelength phase-shifting interferometry," Appl. Opt. 24, 804-807 (1985).
    [CrossRef] [PubMed]
  7. C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
    [CrossRef]
  8. J. Gass, A. Dakoff, M.K. Kim, "Phase imaging without 2π ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-1143, (2003).
    [CrossRef] [PubMed]
  9. D. Parshall and M. K. Kim, "Digital holographic microscopy with dual wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006).
    [CrossRef]
  10. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
    [CrossRef]
  11. S. Dilhaire, S. Grauby, S. Jorez, L. D. P. Lopez, J. Rampnoux and W. Claeys, " Surface displacement imaging by interferometry with a light emitting diode," Appl. Opt. 41, 4996-5001 (2002).
    [CrossRef] [PubMed]
  12. L. Repetto, E. Piano and C. Pontiggia, "Lensless digital holographic microscope with light-emitting diode illumination," Opt. Lett. 29, 1132-1134 (2004).
    [CrossRef] [PubMed]
  13. A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  14. LuxeonTM Emitter and Star sample information AB11, 2 (Feb 2002).

2006 (2)

2005 (1)

2004 (1)

2003 (2)

J. Gass, A. Dakoff, M.K. Kim, "Phase imaging without 2π ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-1143, (2003).
[CrossRef] [PubMed]

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002 (2)

2000 (2)

C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

1998 (1)

1985 (1)

Badizadegan, K.

Barone-Nugent, E. D.

E. D. Barone-Nugent, A. Barty, K. A. Nugent, "Quantitative phase amplitude microscopy I: optical microscopy," J. Microscopy 3, 194-203 (2002).
[CrossRef]

Barty, A.

E. D. Barone-Nugent, A. Barty, K. A. Nugent, "Quantitative phase amplitude microscopy I: optical microscopy," J. Microscopy 3, 194-203 (2002).
[CrossRef]

Claeys, W.

Cuevas, F.J.

Dakoff, A.

Dasari, R. R.

Dilhaire, S.

Drexler, W.

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Feld, M. S.

Fercher, A.

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

French, P. M. W.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

Gass, J.

Grauby, S.

Hitzenberger, C. K.

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Jones, R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

Jorez, S.

Kim, M. K.

Kim, M.K.

Lasser, T.

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lopez, L. D. P.

Malacara, D.

Mann, C. J.

Marroquin, J.L.

Melloch, M. R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

Nolte, D. D.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

Nugent, K. A.

E. D. Barone-Nugent, A. Barty, K. A. Nugent, "Quantitative phase amplitude microscopy I: optical microscopy," J. Microscopy 3, 194-203 (2002).
[CrossRef]

Osten, W.

C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
[CrossRef]

Park, Y.

Parshall, D.

Piano, E.

Pontiggia, C.

Popescu, G.

Rampnoux, J.

Repetto, L.

Seebacher, S.

C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
[CrossRef]

Servin, M.

Tziraki, M.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

Wagner, C.

C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
[CrossRef]

Yu, L.

Appl. Opt. (4)

Appl. Phy. B (1)

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherent light," Appl. Phy. B 70, 151-154 (2000).
[CrossRef]

J. Microscopy (1)

E. D. Barone-Nugent, A. Barty, K. A. Nugent, "Quantitative phase amplitude microscopy I: optical microscopy," J. Microscopy 3, 194-203 (2002).
[CrossRef]

Opt. Eng. (1)

C. Wagner, W. Osten and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85, (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Rep. Prog. Phys. (1)

A. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (2)

LuxeonTM Emitter and Star sample information AB11, 2 (Feb 2002).

P. Marquet, B. Rappaz, T. Colomb, F. Charriere, J. Kuhn, Y. Emery, E. Cuche, C. Depeursinge, P. Magistretti, " Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics," Proc. SPIE 6191, 61910U-61910U5 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Spectra for red, red-orange, amber and green LEDs.

Fig. 2.
Fig. 2.

Experimental setup. L1, collimating lens; L2,L3, microscope objectives; P, polarizer; QW1,QW2, quarter wave plates; A, analyzer; REF, reference mirror, OBJ, object; PZT, piezo transducer; CCD, charged-coupled device camera.

Fig. 3.
Fig. 3.

Phase vs. distance. 2π ambiguities occur when the distance is a multiple of the wavelength.

Fig. 4.
Fig. 4.

Results of two-wavelength optical phase unwrapping: (a) single wavelength phase map, (b) two-wavelength coarse map, (c) two-wavelength fine map with reduced noise.

Fig. 5.
Fig. 5.

Surface profiles for two-wavelength phase unwrapping. (a) single wavelength surface profile, (b) surface profile of coarse map, (c) surface profile of final unwrapped phase map with reduced noise, (d) noise of the coarse map in the region between the two markers in plot (b). Rms noise is 43.27 nm, (e) noise of final unwrapped phase map in the area shown in (c). Red dotted line is the best fit parabolic curvature and black solid line is data, (f) corrected phase noise of the unwrapped phase map, after subtracting the curvature of the object. Rms noise is 10.29 nm.

Fig. 6.
Fig. 6.

Results of three-wavelength optical phase unwrapping: (a) single wavelength phase map, (b) three-wavelength coarse map, (c) three- wavelength fine map with reduced noise.

Fig. 7.
Fig. 7.

Surface profiles for three-wavelength phase unwrapping. (a) single wavelength surface profile, (b) surface profile of coarse map, (c) surface profile of final unwrapped phase map with reduced noise. (d) noise of coarse map in the area shown in (b). rms noise is 105.79 nm, (e) noise of final unwrapped phase map in the area shown in (c). Red dotted line is the best fit parabolic curvature and black solid line is data, (f) Final noise of the unwrapped phase map, after subtracting the curvature of the object. Rms noise is 4.78 nm.

Fig. 8.
Fig. 8.

Results of three-wavelength optical phase unwrapping of onion cells: (a) single wavelength phase map, (b) three-wavelength coarse map, (c) three-wavelength fine map with reduced noise.

Tables (1)

Tables Icon

Table 1. Characteristics of LEDs. Luminous flux values are at 350 mA, Junction Temperature TJ=5°C [14]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I O ( x , y ) + I B ( x , y ) + I R ( x , y ) + 2 I O ( x , y ) I R ( x , y ) cos [ ϕ i + ϕ ( x , y ) ]
ϕ = tan 1 [ I 3 π 2 I π 2 I 0 I π ]
Z m = λ m ϕ m 2 π

Metrics