Abstract

We describe a novel non-linear detection method for optical tomography that does not rely on detection of interference fringes and is free of optical background. The method exploits temporally coherent broadband illumination such as ultrashort pulses, and a non-linear two-photon detection process such as sum-frequency generation (SFG). At the detection stage, the reference beam and the sample beam are mixed in a thick non-linear crystal, and only the mixing term, which is free of optical background, is detected. Consequently, the noise limitations posed by the background in standard OCT (excess and shot noise), do not exist here. Due to the non-linearity, the signal to noise ratio scales more favorably with the optical power compared to standard OCT, yielding an inherent improvement for high speed tomographic scans. Careful design of phase matching in the crystal enables non-linear mixing which is both highly efficient and broadband, yielding both high sensitivity and high depth resolution.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Piston, "Imaging living cells and tissues by two-photon excitation microscopy," Trends Cell Biol. 9, 66-69 (1999).
    [CrossRef] [PubMed]
  2. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
    [CrossRef]
  3. D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
    [CrossRef]
  4. J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
    [CrossRef]
  5. N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  8. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  9. R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
    [CrossRef]
  10. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-152 (1986).
    [CrossRef] [PubMed]
  11. C. Yan and J. Diels, "Imaging with femtosecond pulses," Appl. Opt. 31, 6869-6873 (1992).
    [CrossRef] [PubMed]
  12. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, "Coherent control with broadband squeezed vacuum," quant-ph/0302038.
  13. B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
    [CrossRef] [PubMed]
  14. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  15. M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003).
    [CrossRef] [PubMed]
  16. A. Yariv, Quantum Electronics (John Wiley and Sons, 1988, 3rd ed.), Chap. 16.
  17. H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003).
    [CrossRef]
  18. A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).
  19. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
    [CrossRef]
  20. Z. Zheng and A. M. Weiner, "Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals," Opt. Lett. 25, 984-986 (2000).
    [CrossRef]
  21. A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
    [CrossRef]
  22. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999).
    [CrossRef]
  23. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  24. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef] [PubMed]
  25. C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
    [CrossRef] [PubMed]

2006

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

2004

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).

2003

M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003).
[CrossRef] [PubMed]

H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

2002

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

2001

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

2000

1999

1998

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

1997

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1992

R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

C. Yan and J. Diels, "Imaging with femtosecond pulses," Appl. Opt. 31, 6869-6873 (1992).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987

C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

1986

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Baney, D. M.

R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Becker, T. W.

Book, L.D.

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Choma, M. A.

M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003).
[CrossRef] [PubMed]

Dayan, B.

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

De Silvestri, S.

Diels, J.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fischer, P.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Friesem, A. A.

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-152 (1986).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Halbhuber, K.-J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hong, C. K.

C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

König, K.

Korkotian, E.

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

Margolis, R.

Meshulach, D.

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Oron, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Oseroff, A.

Ou, Z. Y.

C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

Pe’er, A.

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

Pe'er, A.

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

Piston, D. W.

D. W. Piston, "Imaging living cells and tissues by two-photon excitation microscopy," Trends Cell Biol. 9, 66-69 (1999).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-152 (1986).
[CrossRef] [PubMed]

Riemann, I.

Rollins,

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Segal, M.

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Silberberg, Y.

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Sorin, R. V.

R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).

Volkmer, A.

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Wang, H.

H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003).
[CrossRef]

Weiner, A. M.

H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003).
[CrossRef]

Z. Zheng and A. M. Weiner, "Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals," Opt. Lett. 25, 984-986 (2000).
[CrossRef]

Xie, X.S

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Yan, C.

Yelin, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

Zheng, Z.

Appl. Opt.

Appl. Phys. B

D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

IEEE J. Quantum Electron.

H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

J. Mod. Opt

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).

J. Phys. Chem. B

J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Nature

N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express.

M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Phys. Rev. A.

A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006).
[CrossRef]

Phys. Rev. Lett.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Trends Cell Biol.

D. W. Piston, "Imaging living cells and tissues by two-photon excitation microscopy," Trends Cell Biol. 9, 66-69 (1999).
[CrossRef] [PubMed]

Other

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, "Coherent control with broadband squeezed vacuum," quant-ph/0302038.

A. Yariv, Quantum Electronics (John Wiley and Sons, 1988, 3rd ed.), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic non linear OCT configuration. The sample and the reference beams are broadband with a coherent phase relation between them. The two beams are mixed non-linearly and the mixing term is detected as a function of the relative delay between the two beams.

Fig. 2.
Fig. 2.

Calculated phase matching function ∣Fpm∣; (a) A 2-D density plot of ∣Fph∣ as a function of the input wavelength λ and the SFG wavelength Λ, for a 14mm long BBO crystal around 800nm with a non-collinear angle is of 1°. The cross sections along the marked dashed lines are shown in (b) (horizontal cross section) and (c) (vertical cross section). (d), (e) and (f) show similar plots for an LBO crystal with non-critical phase matching and T=40°C, demonstrating ultra-broad phase matching bandwidth near the zero dispersion of the non-linear medium.

Fig. 3.
Fig. 3.

Experimental configuration. Pulses of 45fs at 800nm, emitted from a home built mode locked Ti:Sapphire laser with 80 MHz repetition, were pre-compensated for dispersion with four prisms (SF57 glass) and then split using a polarizing beam splitter (PBS) to a sample beam and a reference beam (the ratio between the beams was set by the angle of the half wave plate). The delay of the reference beam was tuned manually and the sample was mounted on a 3-axis motorized stage. The sample beam is focused with a f=20 mm lens onto the sample, yielding a focal spot of ~5 μm. A double pass of the sample beam through a quarter wave plate rotated its polarization so it is reflected by the PBS towards the non-linear crystal (BBO, type-I phase matching). The first cylindrical lens weakly focuses the two beams to overlap at the BBO crystal (focal spot of ~250 μm) and the second cylindrical lens focuses tightly in the perpendicular direction for high efficiency (focal spot of ~30 μm). The cross SFG signal at 400 nm was then detected while the position of the sample was scanned in two dimensions. The SFG signal was collimated, filtered out from the infrared light by a polarizer and a prism (not shown here) and then detected with a Thorlabs silicon photodiode (3.6 mm wide active area). In order to avoid spurious zero level shifts from the detector, the sample beam was chopped and a lock-in amplifier was used for the detection.

Fig. 4.
Fig. 4.

Depth resolution measurement. The scattering profile of a single scatterer (mirror) measured along the optical (z) axis is shown on a log scale. The sharp profile is superimposed on a -60 dB residual SFG signal due to the sample beam, however the -75 dB noise level is dictated by the electronic detection noise only. The inset shows the scattering profile on a linear scale, demonstrating a resolution of 6.5 μm FWHM.

Fig. 5.
Fig. 5.

A tomographic XZ cut of an onion epithelium, on a logaritmic scale. The internal layered structure is clearly seen to a depth of >1 mm.

Tables (1)

Tables Icon

Table 1. Expected performance of TD-OCT and TP-OCT

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P NL ( A s ( t ) + A r ( t ) ) 2 = A s 2 ( t ) + A r 2 ( t ) + 2 A s ( t ) + A r ( t ) ,
P NL ( Ω ) dωA s ( ω ) A r ( Ω ω ) F pm ( Ω , ω ) ,
F pm ( Ω , ω ) = exp [ iΔk ( Ω , ω ) l 2 ] sin [ Δk ( Ω , ω ) l 2 ] Δk ( Ω , ω ) 2 ,
A s ( ω ) = A r * ( Ω ω ) .

Metrics