Abstract

We have observed the motion of metallic particles above various optical waveguides injected by 1064nm radiation. Small gold particles (250nm diameter) are attracted towards the waveguide where the intensity of the optical field is maximum, and are propelled at high velocity (up to 350μm/s) along the waveguide due to radiation pressure. The behaviour of larger metallic particles (diameter >600nm) depends on the polarization of the evanescent field: for TM polarization they are attracted above the waveguide and propelled by the radiation pressure; for TE polarization they are expelled on the side of the waveguide and propelled at much smaller velocity. This is consistent with calculations of radiative forces on metallic particles by Nieto-Vesperinas et al. 3D-finite element method calculations carried out for our experimental situations confirm the observed dependence with the polarization of the field and the size of the particles. These observations open the way to the development of new microsystems for particles manipulations and sorting applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, "Optical trapping and manipulation of neutral particles using laser," Proc. Nat. Acad. Sci. USA 94, 4853-4860 (1997).
    [CrossRef]
  3. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992).
    [CrossRef] [PubMed]
  4. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996).
    [CrossRef] [PubMed]
  5. M. Vilfan, I. Musevic, and M. Copic, "AFM observation of force on a dielectric sphere in the evanescent filed of totally reflected light," Europhys. Lett. 43, 41-46 (1997).
    [CrossRef]
  6. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London, Ser. A 362, 719-737 (2004).
    [CrossRef]
  7. K. Sasaki, J. I. Hotta, K. I. Wada, and H. Masuhara, "Analysis of radiation pressure exerted on a metallic particle within an evanescent field," Opt. Lett. 25, 1385-1388 (2000).
    [CrossRef]
  8. L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 76, 1993-1995 (2000).
    [CrossRef]
  9. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
    [CrossRef]
  10. H. Y. Jaising and O. G. Helleso, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005).
    [CrossRef]
  11. J. P. Hole, J. S. Wilkinson, K. Grujic, and O. G. Helleso, "Velocity distribution of gold nanoparticles trapped on an optical waveguide," Opt. Express 13, 3896-3901 (2005).
    [CrossRef] [PubMed]
  12. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express,  13, 6956-6963 (2005).
    [CrossRef] [PubMed]
  13. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
    [CrossRef]
  14. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallic nanocylinders on surfaces: Polarization dependence and plasmon resonance conditions," Opt. Lett. 27,2149-2151 (2002).
    [CrossRef]
  15. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Optical forces on small particles: Attractive and repulsive nature and plamon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003).
    [CrossRef]
  16. K. Grujic, O. G. Helleso, J. S. Wilkinson, and J. P. Hole, "Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass," Opt. Commun. 239, 227-235 (2004).
    [CrossRef]
  17. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
    [CrossRef]
  18. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E.A. Palik, ed., (Academic Press, Fla., 1985).
  19. J. D. Jackson, Classical electrodynamics, (Wiley, New-York 3rd ed. 1999).
  20. K. Svoboda and S. M. Block, "Optical trapping of metallic rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [CrossRef] [PubMed]
  21. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405-1 195405-11 (2002).
    [CrossRef]

2005

2004

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London, Ser. A 362, 719-737 (2004).
[CrossRef]

K. Grujic, O. G. Helleso, J. S. Wilkinson, and J. P. Hole, "Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

2003

2002

2000

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

K. Sasaki, J. I. Hotta, K. I. Wada, and H. Masuhara, "Analysis of radiation pressure exerted on a metallic particle within an evanescent field," Opt. Lett. 25, 1385-1388 (2000).
[CrossRef]

1997

M. Vilfan, I. Musevic, and M. Copic, "AFM observation of force on a dielectric sphere in the evanescent filed of totally reflected light," Europhys. Lett. 43, 41-46 (1997).
[CrossRef]

A. Ashkin, "Optical trapping and manipulation of neutral particles using laser," Proc. Nat. Acad. Sci. USA 94, 4853-4860 (1997).
[CrossRef]

1996

1994

1992

1979

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Appl. Phys. Lett.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Europhys. Lett.

M. Vilfan, I. Musevic, and M. Copic, "AFM observation of force on a dielectric sphere in the evanescent filed of totally reflected light," Europhys. Lett. 43, 41-46 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

H. Y. Jaising and O. G. Helleso, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005).
[CrossRef]

K. Grujic, O. G. Helleso, J. S. Wilkinson, and J. P. Hole, "Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London, Ser. A

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London, Ser. A 362, 719-737 (2004).
[CrossRef]

Phys. Rep.

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

Phys. Rev. B

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proc. Nat. Acad. Sci. USA

A. Ashkin, "Optical trapping and manipulation of neutral particles using laser," Proc. Nat. Acad. Sci. USA 94, 4853-4860 (1997).
[CrossRef]

Other

D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E.A. Palik, ed., (Academic Press, Fla., 1985).

J. D. Jackson, Classical electrodynamics, (Wiley, New-York 3rd ed. 1999).

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405-1 195405-11 (2002).
[CrossRef]

Supplementary Material (3)

» Media 1: MPG (1919 KB)     
» Media 2: MPG (778 KB)     
» Media 3: MPG (868 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up

Fig. 2.
Fig. 2.

Movie (1.92 MB) Effect of the polarization of the optical field on the propulsion and trapping of 1μm gold particles above a single mode Ag+ waveguide propagating 400mW of 1064nm radiation. [Media 1]

Fig. 3.
Fig. 3.

Movie (0.78MB) Propulsion and trapping of 600nm gold particles above a multimode silicon nitride waveguide propagating 1064nm radiation with TM polarization. The power of the optical radiation at the observation region, estimated from the observation of the motion of dielectric particles in similar conditiosn is a few mW. [Media 2]

Fig. 4.
Fig. 4.

Movie (0.87.MB) Propulsion and trapping of 600nm gold particles above a multimode Silicon Nitride waveguide propagating 60 mW of 1064nm radiation with TE polarization. [Media 3]

Fig. 5.
Fig. 5.

Electromagnetic field energy density distribution (arbitrary units) and flux of Maxwell stress tensor distribution on the surface of a gold particle (500nm diameter) placed on the axis of the waveguide for TE and TM polarizations of the incident field. Numerical values of the Maxwell tensor correspond to an incident wave of power 1Watt. Side view with respect to the direction of propagation of the incident wave.

Fig. 6.
Fig. 6.

Electromagnetic field energy density distribution for TE polarization of the incident filed and flux of Maxwell stress tensor distribution on the surface of a gold particle (diameter 500nm) placed on the axis (left), and of the side (right) of a silicon nitride waveguide Front view with respect to the direction of propagation of the incident wave.

Fig. 7.
Fig. 7.

Numerical calculation of the components of the radiative forces exerted on spherical particles placed on the axis of a silicon nitride waveguide. On the left, for glass particles, the forces increase with the particle radius. On the right, for gold particles and TE polarization the vertical “gradient force” is attractive (negative) at small radius but it becomes repulsive at large radius. The power of the incident electromagnetic wave is arbitrary fixed to 1Watt.

Fig. 8.
Fig. 8.

Electromagnetic surface forces applied to a metal. The discontinuity of the electric (a) and magnetic (b) fields across the skin depth is related to surface charges ans currents. Note that the forces applied on the electric surface charges still tend to attract the metal towards the dielectric if the direction of the electric field is reversed, while the magnetic forces still tend to repell the metal from the dielectric if the direction of the magnetic field is reversed.

Tables (1)

Tables Icon

Table1. Comparison of the observed propelling velocity of a mixture of gold and glass beads above a silicon nitride waveguide for two polarizations of the optical field. The middle and left columns are experimental values. The values in the right column are extrapolated from the experimental values of the middle column and correspond to the values which would be observed if the optical power in the waveguide were the same as TE polarization (see text).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F = S T n d S
< F n >= ε < E 2 > 2 < B 2 > 2 μ
α = a 3 ( ε ' 1 ) ( ε ' + 2 ) + ε " ( ε ' + 2 ) 2 + ε " 2
< F >= 1 4 ℜe ( α ) E 0 2

Metrics