Abstract

We demonstrate the implementation of fluorescence correlation spectroscopy (FCS) on a chip. Full planar integration is achieved by lithographic definition of sub-picoliter excitation volumes using intersecting solid and liquid-core optical waveguides. Concentration dependent measurements on dye molecules with single molecule resolution are demonstrated. Theoretical modeling of the FCS autocorrelation function in microstructured geometries shows that the FCS behavior can be controlled over a wide range by tailoring the micro-photonic environment. The ability to perform correlation spectroscopy using silicon photonics without the need for free-space microscopy permits implementation of numerous diagnostic applications on compact planar optofluidic devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zander, J. Enderlein, and R.A. Keller, "Single-molecule detection in solution: methods and applications," 1st ed., Wiley (2002).
  2. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
    [CrossRef]
  3. W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
    [CrossRef]
  4. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
    [CrossRef]
  5. D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
    [CrossRef]
  6. M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
    [CrossRef] [PubMed]
  7. M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
    [CrossRef] [PubMed]
  8. M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
    [CrossRef] [PubMed]
  9. L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
    [CrossRef]
  10. C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
    [CrossRef]
  11. D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
    [CrossRef]
  12. D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
    [CrossRef] [PubMed]
  13. H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
    [CrossRef]
  14. J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
    [CrossRef]
  15. D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
    [CrossRef]
  16. P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
    [CrossRef]
  17. P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
    [CrossRef]
  18. M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994).
    [CrossRef] [PubMed]

2007 (1)

C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
[CrossRef]

2006 (3)

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

2005 (3)

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

2004 (2)

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

2003 (1)

W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

2002 (2)

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

1999 (1)

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

1997 (1)

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

1994 (1)

M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994).
[CrossRef] [PubMed]

1990 (1)

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

1972 (1)

D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
[CrossRef]

Barber, J.P.

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

Brinkmeier, M.

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

Craighead, H. G.

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

Davis, L. M.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Deamer, D.W.

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
[CrossRef]

Dorre, K.

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

Eggeling, C.

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

Eggleton, B.J.

C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
[CrossRef]

Eigen, M.

M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994).
[CrossRef] [PubMed]

Elson, E.

D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
[CrossRef]

Etienne, E.

P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

Foquet, M.

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

Fromm, D.P.

W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

George, Z.

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

Hakanson, U.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

Haupts, U.

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

Hawkins, A.R.

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

Hell, S.W.

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

Keller, R. A.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Korlach, J.

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

Lenne, P.F.

P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

Lunt, E.J.

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

Magde, D.

D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
[CrossRef]

Maiti, S.

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

Moerner, W.E.

W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
[CrossRef]

Riebeseel, K.

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

Rigler, R.

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994).
[CrossRef] [PubMed]

Rigneault, H.

P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

Rogobete, L.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

Sandoghdar, V.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

Schmidt, H.

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

Schwille, P.

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

Seitzinger, N. K.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Shera, E. B.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Soper, S. A.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Webb, W.W.

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
[CrossRef]

Yin, D.

D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006).
[CrossRef] [PubMed]

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

Zipfel, W. R.

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

Anal. Chem. (2)

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002).
[CrossRef] [PubMed]

M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004).
[CrossRef]

P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

Applied Physics Letters (1)

D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005).
[CrossRef]

Biophys. Chem. (1)

M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997).
[CrossRef] [PubMed]

Biophys. J. (1)

P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990).
[CrossRef]

Electron. (1)

H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006).
[CrossRef]

D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972).
[CrossRef]

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005).
[CrossRef]

PNAS (1)

M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

Other (1)

C. Zander, J. Enderlein, and R.A. Keller, "Single-molecule detection in solution: methods and applications," 1st ed., Wiley (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Excitation geometry for FCS in optofluidic ARROW chip. Excitation beam enters liquid-core waveguide along x-direction. Light is confined in liquid and solid core via dielectric multilayers shown in different shades of gray. Molecules within the excitation beam emit fluorescence that is collected in the z-direction. (b) Schematic view of optofluidic FCS chip. Liquid-core waveguide (pink) is connected to fluidic reservoir and optically coupled to solid core waveguides (green); (c) and (d): SEM images of solid and hollow core cross sections.

Fig. 2.
Fig. 2.

(a) FCS autocorrelation signal on ARROW chip for different concentrations of Alexa 647 dye. Symbols: experiment; lines: model. Inset: magnification of 100pm and 1000pm data. (b) Number of molecules in excitation volume versus dye concentration; squares: FCS data; circles: integrated fluorescence detection [12].

Fig. 3.
Fig. 3.

(a) Autocorrelation function dependence on ARROW layer reflectivity R (D=250μm2/s). Inset: standing wave excitation pattern forming in x-direction and leading to smaller excitation volume (gray ellipses). Vertical arrows mark the characteristic time scales caused by the difference in effective volumes; (b) Autocorrelation function in presence of cavity effect and drift current along the z-direction (R=75%, D=250μm2/s).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = W ( r ) W ( r ´ ) δC ( r , t ) δC ( r ´ , t + τ ) dVdV ´ C [ W ( r ) dV ] 2
I ( x ) = I 0 t 2 1 + r 2 + 2 r cos ( 4 π n c ( L x ) / λ ) 1 2 r 2 cos ( 4 π n c L / λ ) + r 4
G ( τ ) = F c ( τ ) π 3 2 w z w y w xc C [ 1 + 4 Dt w xc 2 ] 0.5 [ 1 + 4 Dt w y 2 ] 0.5 [ 1 + 4 Dt w z 2 ] 0.5
F c ( τ ) = ( 1 + R ) 2 + 2 Re w xc 2 k 0 2 4 w xc 2 + 4 + 2 Re k 0 2 w xc 2 4 cos ( 2 k 0 L ) + 4 r ( 1 + R ) cos ( k 0 L ) e k 0 2 w xc 2 16 w xc 2 + 8 D τ w xc 2 + 4 D τ ( 1 + R + 2 r e k 0 2 w xc 2 8 cos ( k 0 L ) ) 2
V eff π 3 2 w xc w y w z [ 1 + 2 R ( 1 + R ) 2 ] 1

Metrics