Abstract

We describe a real-time holographic technique used to observe dental contraction due to photo-polymerization of dental filling during LED lamp illumination. An off-axis setup was used, with wet in-situ processing of the holographic plate, and consequent recording of interference fringes using CCD camera. Finite elements method was used to calculate internal stress of dental tissue, corresponding to experimentally measured deformation. A technique enables selection of preferred illumination method with reduced polymerization contraction. As a consequence, durability of dental filling might be significantly improved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. Leinfelder, “Composite resin systems for posterior restorations,” Pract. Periodontics. Aesthet. Dent. Suppl. 1, 23–l27 (1993).
  2. C. J. Whitters, J. M. Girkin, and J. J. Carey, “Curing of dental composites by use of InGaN light-emitting diodes,” Opt. Lett. 24, 67–l68 (1999).
    [CrossRef]
  3. R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
    [CrossRef] [PubMed]
  4. G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
    [CrossRef]
  5. A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
    [CrossRef]
  6. J. D. Eick and F. H. Welch, “Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity,” Quintessence Int. 17, 103–l111 (1986).
    [PubMed]
  7. C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).
  8. E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
    [CrossRef] [PubMed]
  9. H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
    [CrossRef]
  10. T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
    [CrossRef]
  11. P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
    [CrossRef] [PubMed]
  12. H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
    [CrossRef] [PubMed]
  13. C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
    [CrossRef] [PubMed]
  14. J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
    [CrossRef] [PubMed]
  15. P.R. Wedendal and H.I. Bjelkhagen, “Dynamics of Human Teeth in Function by Means of Double Pulsed Holography: an Experimental Investigation,” Appl. Opt. 13, 2481–l2485 (1974).
    [CrossRef] [PubMed]
  16. D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
    [CrossRef] [PubMed]
  17. N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
    [CrossRef] [PubMed]
  18. K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
    [CrossRef]
  19. H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
    [CrossRef] [PubMed]
  20. G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
    [CrossRef]
  21. D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
    [CrossRef] [PubMed]

2007 (1)

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

2006 (2)

J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
[CrossRef] [PubMed]

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

2005 (1)

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

2004 (4)

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

2002 (4)

E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
[CrossRef] [PubMed]

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
[CrossRef]

2001 (3)

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

1999 (2)

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

C. J. Whitters, J. M. Girkin, and J. J. Carey, “Curing of dental composites by use of InGaN light-emitting diodes,” Opt. Lett. 24, 67–l68 (1999).
[CrossRef]

1993 (1)

K. F. Leinfelder, “Composite resin systems for posterior restorations,” Pract. Periodontics. Aesthet. Dent. Suppl. 1, 23–l27 (1993).

1986 (1)

J. D. Eick and F. H. Welch, “Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity,” Quintessence Int. 17, 103–l111 (1986).
[PubMed]

1984 (1)

C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).

1974 (1)

Apicella, A.

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

Ausiello, P.

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

Bjelkhagen, H.I.

Blackwell, G. B.

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

Blažic, L

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

Carey, J. J.

Chang, C.-H.

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

Cheng, C.-S.

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

Cooper, J.E.

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

Couegnat, G.

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

Davidson, C. L

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).

de Gee, A. J.

C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).

DeLong, R.

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

Ding, Z.

J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
[CrossRef] [PubMed]

Douglas, R.

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

Douglas, W. H.

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

Douglas, W.H.

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

Eick, J. D.

G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
[CrossRef]

J. D. Eick and F. H. Welch, “Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity,” Quintessence Int. 17, 103–l111 (1986).
[PubMed]

Ensaff, H.

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

Erickson, R. L

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

Feilzer, A. J.

C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).

Felten, K.

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

Ferracane, J. L

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

Fogleman, E. A.

E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
[CrossRef] [PubMed]

Fok, S.L.

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

Gao, J.

J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
[CrossRef] [PubMed]

Girkin, J. M.

Grobler, S.

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

Grubbs, W. T.

E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
[CrossRef] [PubMed]

Hickel, R.

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

Hilton, T. J.

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

Ilie, N.

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

Jacobsen, P.H.

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

Jandt, K. D.

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

Kelly, M. T.

E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
[CrossRef] [PubMed]

Kunzelmann, K. H.

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

Lang, H.

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

Laughlin, G. A.

G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
[CrossRef]

Lee, H.-E.

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

Leinfelder, K. F.

K. F. Leinfelder, “Composite resin systems for posterior restorations,” Pract. Periodontics. Aesthet. Dent. Suppl. 1, 23–l27 (1993).

Lin, C.-L.

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

Mills, R. W.

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

Müllejans, R.

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

O’Doherty, D.M.

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

Oberholzer, T. G.

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

Pameijer, C. H.

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

Panic, B.

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

Pantelic, D.

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

Pintado, M. R.

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

Qualtrough, A.J.E.

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

Raab, W. H. M.

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

Rampado, R.

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

Rengo, S.

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

Rossouw, R. J.

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

Sakaguchi, R. L

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

Savic-Ševic, S.

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

Tantbirojn, D.

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

Trixner, K.

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

Uhl, A.

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

Vandewalle, K. S.

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

Versluis, A.

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

Wang, C.-H.

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

Wedendal, P.R.

Welch, F. H.

J. D. Eick and F. H. Welch, “Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity,” Quintessence Int. 17, 103–l111 (1986).
[PubMed]

Whitters, C. J.

Williams, J. L

G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
[CrossRef]

Xu, W.

J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomaterials (3)

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, “High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties,” Biomaterials 23, 2955–l2963 (2002).
[CrossRef] [PubMed]

H. Ensaff, D.M. O’Doherty, and P.H. Jacobsen, “The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis,” Biomaterials 22, 3097–l3103 (2001).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (2)

C.-L. Lin, C.-H. Chang, C.-S. Cheng, C.-H. Wang, and H.-E. Lee, “Automatic finite element mesh generation for maxillary second premolar,” Comput. Methods Programs Biomed. 59, 187–l195 (1999).
[CrossRef] [PubMed]

J. Gao, W. Xu, and Z. Ding, “3D finite element mesh generation of complicated tooth model based on CT slices,” Comput. Methods Programs Biomed. 82, 97–l105 (2006).
[CrossRef] [PubMed]

Dent. Mater. (6)

N. Ilie, K. Felten, K. Trixner, R. Hickel, and K. H. Kunzelmann, “Shrinkage behavior of a resin based composite irradiated with modern curing units,” Dent. Mater. 21, 483–l489 (2005).
[CrossRef] [PubMed]

K. S. Vandewalle, J. L Ferracane, T. J. Hilton, R. L Erickson, and R. L Sakaguchi, “Effect of energy density on properties and marginal integrity of posterior resin composite restorations,” Dent. Mater. 20, 96–l106 (2004).
[CrossRef]

A. Versluis, D. Tantbirojn, M. R. Pintado, R. DeLong, and W. H. Douglas, “Residual shrinkage stress distributions in molars after composite restoration,” Dent. Mater. 6, 554–l564 (2004).
[CrossRef]

E. A. Fogleman, M. T. Kelly, and W. T. Grubbs, “Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives,” Dent. Mater. 18, 324–l330 (2002).
[CrossRef] [PubMed]

G. Couegnat, S.L. Fok, J.E. Cooper, and A.J.E. Qualtrough, “Structural optimization of dental restorations using the principle of adaptive growth,” Dent. Mater. 22, 3–l12 (2006).
[CrossRef]

D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, R. Douglas, and W.H. Douglas, “Tooth deformation patterns in molars after composite restoration,” Dent. Mater. 20, 535–l542 (2004).
[CrossRef] [PubMed]

J. Biomech. (1)

P. Ausiello, A. Apicella, C. L Davidson, and S. Rengo, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomech. 34, 1269–l1277 (2001).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. (Appl. Biomater.) (1)

G. A. Laughlin, J. L Williams, and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” J. Biomed. Mater. Res. (Appl. Biomater.) 63, 671–l678 (2002).
[CrossRef]

J. Biomed. Opt. (1)

D. Pantelic, L Blažic, S. Savic-Ševic, and B. Panic, “Holographic detection of a tooth structure deformation after dental filling polymerization,” J. Biomed. Opt.,  12, 024026, (2007)
[CrossRef] [PubMed]

J. Dent. Res. (1)

C. L Davidson, A. J. de Gee, and A. J. Feilzer, “The competition between the composite-dentin bond strength and the polymerization contraction stress,” J. Dent. Res. 12, 1396–l1399 (1984).

Lasers in Surg. Med. (1)

H. Lang, R. Rampado, R. Müllejans, and W. H. M. Raab, “Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry,” Lasers in Surg. Med. 34, 300–l309 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

T. G. Oberholzer, S. Grobler, C. H. Pameijer, and R. J. Rossouw, “A modified dilatometer for determining volumetric polymerization shrinkage of dental materials,” Meas. Sci. Technol. 13, 78–l83 (2002).
[CrossRef]

Opt. Lett. (1)

Pract. Periodontics. Aesthet. Dent. Suppl. (1)

K. F. Leinfelder, “Composite resin systems for posterior restorations,” Pract. Periodontics. Aesthet. Dent. Suppl. 1, 23–l27 (1993).

Quintessence Int. (1)

J. D. Eick and F. H. Welch, “Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity,” Quintessence Int. 17, 103–l111 (1986).
[PubMed]

Supplementary Material (1)

» Media 1: AVI (2214 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Real time holographic setup: L - laser, BS - beam splitter, C - CCD camera, PC-computer, LE - LED lamp, LG - liquid gate for real time hologram processing, T - tooth, V -variable attenuator, M - mirror, LS - lens, IF- 532 nm interference filter.

Fig. 2.
Fig. 2.

Photograph of an extracted human tooth: a) intact, b) with mesio-ocluso-distal (MOD) cavity.

Fig. 3.
Fig. 3.

Interference pattern seen on the tooth surface. This is the final frame from a film (AVI file, 2.16 MB large). [Media 1]

Fig. 4.
Fig. 4.

Time dependence of fringe-count across the tooth. One fringe is equivalent to approximately 576 nm deformation.

Fig. 5.
Fig. 5.

a) Mechanical model of a third molar and b) its exploded view where dentin and enamel sections are shown. c) Tooth model with MOD cavity (enamel is shaded gray and dentin green).

Fig. 6.
Fig. 6.

a) Deformation distribution as a result of polymerization. Numerical values are color coded and expressed in μm. b) von Mises stress distribution during two-step polymerization. Numerical values are color coded and expressed in MPa.

Tables (1)

Tables Icon

Table 1. Mechanical Characteristics of Dental Tissues.

Metrics