Abstract

Activity of the human visual cortex, elicited by steady-state flickering at 8 Hz, is non-invasively probed by multi-speckle diffusing-wave spectroscopy (DWS). Parallel detection of the intensity fluctuations of statistically equivalent, but independent speckles allows to resolve stimulation-induced changes in the field autocorrelation of multiply scattered light of less than 2%. In a group of 9 healthy subjects we find a faster decay of the field autocorrelation function during the stimulation periods for data measured with a long-distance probe (30 mm source-receiver distance) at 2 positions over the occipital cortex (t-test: t(8) = -2.672, p = 0.028 < 0.05 for position 1, t(8) = -2.874, p = 0.021 < 0.05 for position 2). In contrast, no statistically significant change is seen when a short-distance probe (16mm source-receiver distance) is used (t-test: t(8) = -2.043, p = 0.075 > 0.05 for position 1, t(8) = -2.146, p = 0.064 > 0.05 for position 2). The enhanced dynamics observed with DWS is positively correlated with the functional increase of blood volume in the visual cortex, while the heartbeat rate is not affected by stimulation. Our results indicate that the DWS signal from the visual cortex is governed by the regional cerebral blood flow velocity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996).
    [CrossRef]
  2. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987).
    [CrossRef]
  3. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
    [CrossRef] [PubMed]
  4. C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
    [PubMed]
  5. G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
    [CrossRef] [PubMed]
  6. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Q. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, "Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study," J. Biomed. Opt. 11, 064,021 (2006).
    [CrossRef]
  7. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
    [CrossRef] [PubMed]
  8. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
    [CrossRef] [PubMed]
  9. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. MohlerIII, and A. G. Yodh, "Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies," J. Biomed. Opt. 10, 024,027-1-12 (2005).
    [CrossRef] [PubMed]
  10. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007).
    [CrossRef] [PubMed]
  11. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
    [CrossRef] [PubMed]
  12. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Non-Invasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 044,002-1-12 (2005).
    [CrossRef] [PubMed]
  13. P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
    [PubMed]
  14. R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992).
    [CrossRef] [PubMed]
  15. M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
    [CrossRef]
  16. During finger opposition for 130 s which leads to a reduction of the DWS decay time measured over the somatomotor area C3 by about 28%, we observe heartbeat increases of typically 20% (J. Li et al., unpublished data).
  17. M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
    [PubMed]
  18. C. S. Herrmann, "Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Exp. Brain Res. 137, 346-353 (2001).
    [CrossRef] [PubMed]
  19. H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
    [CrossRef] [PubMed]
  20. F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
    [CrossRef]
  21. H. H. Jasper, "The ten-twenty electrode system of the International Federation," Electroencephal. Clin. Neurophysiol. 10, 370-375 (1958).
  22. T. Gisler, H. R¨uger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, and J. Ri?cka, "Mode-selective dynamic light scattering: theory versus experimental realization," Appl. Opt. 34, 3546-3553 (1995).
    [CrossRef] [PubMed]
  23. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
    [CrossRef]
  24. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

2002 (1)

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

2001 (2)

C. S. Herrmann, "Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Exp. Brain Res. 137, 346-353 (2001).
[CrossRef] [PubMed]

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

1996 (1)

K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996).
[CrossRef]

1995 (1)

1992 (1)

R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992).
[CrossRef] [PubMed]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

1987 (1)

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

1980 (1)

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

1974 (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

1958 (1)

H. H. Jasper, "The ten-twenty electrode system of the International Federation," Electroencephal. Clin. Neurophysiol. 10, 370-375 (1958).

Arbizu, J.

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Artieda, J.

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Boas, D. A.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Buerk, D. G.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Burnett, M. G.

Busch, T. M.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

Cheung, C.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Choe, R.

Culver, J. P.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Czerniecki, B. J.

Delpy, D. T.

Detre, J. A.

Dörschel, K.

K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996).
[CrossRef]

Durduran, T.

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Faro, S. H.

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

Finlay, J. C.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

Floyd, T. F.

Fraker, D. L.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Franceschini, M. A.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Gisler, T.

Glatstein, E.

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Greenberg, J. H.

Hahn, S. M.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

Hatazawa, J.

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

Herrmann, C. S.

C. S. Herrmann, "Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Exp. Brain Res. 137, 346-353 (2001).
[CrossRef] [PubMed]

Hsi, A.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Ito, H.

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

Jasper, H. H.

H. H. Jasper, "The ten-twenty electrode system of the International Federation," Electroencephal. Clin. Neurophysiol. 10, 370-375 (1958).

Kanno, I.

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

Kim, S.-G.

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

Koppel, D. E.

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

Larsen, B.

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

Lassen, N. A.

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

Malkowicz, S. B.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

Maret, G.

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Masdeu, J. C.

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Menon, C.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Mohamed, F. B.

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

Müller, G.

K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996).
[CrossRef]

Okada, E.

Pastor, M. A.

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Patel, D.

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

Pingpank, J. F.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Pinus, A. B.

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

Polin, G. M.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Prabakaran, I.

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Putt, M. E.

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Roland, P. E.

R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992).
[CrossRef] [PubMed]

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

Saunders, H. M.

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Sehgal, C. S.

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Seitz, R. J.

R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992).
[CrossRef] [PubMed]

Skinhøj, E.

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

Takahashi, K.

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

Tchou, J. C.

Thompson, J. J.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Tracy, J. I.

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

Valencia, M.

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Wang, H.-W.

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Wang, J.

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

Wolf, P. E.

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Yodh, A. G.

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
[CrossRef] [PubMed]

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Yu, G.

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
[CrossRef] [PubMed]

Zhou, C.

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004).
[CrossRef] [PubMed]

Zhu, T. C.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Cancer Res. (1)

C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003).
[PubMed]

Clin. Cancer Res. (1)

G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005).
[CrossRef] [PubMed]

Electroencephal. Clin. Neurophysiol. (1)

H. H. Jasper, "The ten-twenty electrode system of the International Federation," Electroencephal. Clin. Neurophysiol. 10, 370-375 (1958).

Eur. J. Neurosci. (1)

R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

C. S. Herrmann, "Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Exp. Brain Res. 137, 346-353 (2001).
[CrossRef] [PubMed]

Flow Meas. Instrum. (1)

K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001).
[CrossRef] [PubMed]

J. Magn. Reson. (1)

F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002).
[CrossRef]

J. Neurophysiol. (1)

P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980).
[PubMed]

J. Neurosci. (1)

M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003).
[PubMed]

Opt. Express (1)

Opt. Lett. (2)

Photochem. Photobiol. (1)

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974).
[CrossRef]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
[CrossRef] [PubMed]

Psychophysiol. (1)

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003).
[CrossRef]

Z. Phys. B (1)

G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987).
[CrossRef]

Other (4)

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Q. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, "Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study," J. Biomed. Opt. 11, 064,021 (2006).
[CrossRef]

G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. MohlerIII, and A. G. Yodh, "Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies," J. Biomed. Opt. 10, 024,027-1-12 (2005).
[CrossRef] [PubMed]

During finger opposition for 130 s which leads to a reduction of the DWS decay time measured over the somatomotor area C3 by about 28%, we observe heartbeat increases of typically 20% (J. Li et al., unpublished data).

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Non-Invasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 044,002-1-12 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic view of the experimental setup showing the positioning of the source fiber (S; red circle) and the receiver fiber bundles (R1 and R2 for short- and long-distance probes, respectively; blue circles). Light and dark grey shaded areas indicate the tissue regions sampled by the long- and by the short-distance probes, respectively. (b) Positioning of the DWS probes on the occipital cortex. I: inion, Cz: vertex, N: nasion.

Fig. 2.
Fig. 2.

Top: bundle-averaged field autocorrelation function g b (1)(τ), measured over the primary visual cortex, from one subject for baseline (blue circles) and visual stimulation periods (red squares). Bottom: difference Δg b (1)(τ) = g b,stimulation (1)(τ) - g b,baseline (1)(τ) as a function of lag time τ. The probe with 30 mm source-receiver spacing was located above the inion at 10% of the inion-nasion distance. The error bars represent the standard deviation over 5 blocks. For clarity, only data for lag times τ < 1.3 × 10-4s are shown. The average relative decay time τ s/b is 0.955. Total integration time: 150 s. Count rate per fiber mode: 3.5 kHz.

Fig. 3.
Fig. 3.

Group average of the relative decay times τ s/b measured with the long- and the short-distance probe, and of the heartbeat rate for positions 1 and 2 over the primary visual cortex. The difference of the heartbeat rate between positions 1 and 2 is due to the successive measurements at these two positions. The error bars represent the standard deviation of τ s/b and heartbeat rate, respectively, over the 9 subjects.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ d = τ 1 τ 2 g b ( 1 ) ( τ ) d τ .

Metrics