Abstract

We report the development of spatially extended fluorescence correlation spectroscopy for visualizing and quantifying multiphase flows in microchannels. We employ simultaneous detection with a high-speed camera across the width of the channel, enabling investigation of the dynamics of the flow at short time scales. We take advantage of the flow to scan the sample past the fixed illumination, capturing frames up to 100 KHz. At these rates, we can resolve the motion of sub-micron particles at velocities up to the order of 1 cm/s. We visualize flows with kymographs and quantify velocity profiles by cross-correlations within the focal volume. We demonstrate the efficacy of our approach by measuring the depth-resolved velocity profile of suspensions of sub-micron diameter silica particles flowing up to 1.5 mm/s.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
    [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
    [CrossRef] [PubMed]
  3. S. Bains, "Going with the flow," IEE Review 52, 42 (2006).
    [CrossRef]
  4. D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
    [CrossRef]
  5. T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005).
    [CrossRef]
  6. M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
    [CrossRef]
  7. J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
    [CrossRef]
  8. K. B. Im, S. Han, H. Park, D. Kim, and B. M. Kim, "Simple high-speed confocal line-scanning microscope," Opt. Express 13, 5151 (2005).
    [CrossRef] [PubMed]
  9. R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
    [CrossRef]
  10. J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
    [CrossRef]
  11. H. Blom, M. Johannson, M. Gosch, T. Sigmundsson, J. Holm, S. Hard, and R. Rigler, "Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element," Appl. Opt. 41, 6614 (2002).
    [CrossRef] [PubMed]
  12. K. K. Kuricheti, V. Buschmann, and K. D. Weston, "Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices," Appl. Spectrosc. 58, 1180 (2004).
    [CrossRef] [PubMed]
  13. M. Burkhardt and P. Schwille, "Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy," Opt. Express 14, 5013 (2006).
    [CrossRef] [PubMed]
  14. B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006).
    [CrossRef]
  15. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
    [CrossRef] [PubMed]
  16. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938 (1974).
    [CrossRef]
  17. S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676 (1999).
    [CrossRef] [PubMed]
  18. G. K. Batchelor, An Introduction to Fluid Mechanics (1967).

2006 (4)

S. Bains, "Going with the flow," IEE Review 52, 42 (2006).
[CrossRef]

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

M. Burkhardt and P. Schwille, "Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy," Opt. Express 14, 5013 (2006).
[CrossRef] [PubMed]

B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

2005 (2)

T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005).
[CrossRef]

K. B. Im, S. Han, H. Park, D. Kim, and B. M. Kim, "Simple high-speed confocal line-scanning microscope," Opt. Express 13, 5151 (2005).
[CrossRef] [PubMed]

2004 (2)

J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
[CrossRef]

K. K. Kuricheti, V. Buschmann, and K. D. Weston, "Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices," Appl. Spectrosc. 58, 1180 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

2002 (3)

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
[CrossRef]

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
[CrossRef] [PubMed]

H. Blom, M. Johannson, M. Gosch, T. Sigmundsson, J. Holm, S. Hard, and R. Rigler, "Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element," Appl. Opt. 41, 6614 (2002).
[CrossRef] [PubMed]

2001 (2)

J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
[CrossRef]

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676 (1999).
[CrossRef] [PubMed]

1974 (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Anderson, D.

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Bains, S.

S. Bains, "Going with the flow," IEE Review 52, 42 (2006).
[CrossRef]

Beebe, D. J.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
[CrossRef]

Biancaniello, B. L.

B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

Blom, H.

Burkhardt, M.

Buschmann, V.

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Choi, C. K.

J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
[CrossRef]

Crocker, J. C.

B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

de Mello, A. J.

J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
[CrossRef]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Edel, J. B.

J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
[CrossRef]

Frank, M.

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

Gao, J.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

Gosch, M.

Han, S.

Hard, S.

Hill, E. K.

J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
[CrossRef]

Holm, J.

Im, K. B.

Johannson, M.

Kihm, K. D.

J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
[CrossRef]

Kim, B. M.

Kim, D.

Koppel, D. E.

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Kuricheti, K. K.

Lee, C. S.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

Lima, R.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

Locascio, L. E.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
[CrossRef] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Mensing, G. A.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
[CrossRef]

Morris, J. F.

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

Park, H.

Park, J. S.

J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
[CrossRef]

Quake, S. R.

T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005).
[CrossRef]

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
[CrossRef] [PubMed]

Rigler, R.

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Schwille, P.

Sigmundsson, T.

Squires, T. M.

T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005).
[CrossRef]

Thorsen, T.

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
[CrossRef] [PubMed]

Tsubota, K.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

Wada, S.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

Walker, G. M.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
[CrossRef]

Weeks, E. R.

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

Weiss, S.

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676 (1999).
[CrossRef] [PubMed]

Weston, K. D.

Whitesides, G. M.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Xu, J.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

Yamaguchi, T.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

Anal. Chem. (1)

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001).
[CrossRef] [PubMed]

Ann. Rev. Biomed. Eng. (1)

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000).
[CrossRef] [PubMed]

Exp. Fluids (1)

J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004).
[CrossRef]

IEE Review (1)

S. Bains, "Going with the flow," IEE Review 52, 42 (2006).
[CrossRef]

J. Fluid Mech. (1)

M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003).
[CrossRef]

Meas. Sci. and Tech. (1)

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

Science (2)

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676 (1999).
[CrossRef] [PubMed]

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002).
[CrossRef] [PubMed]

The Analyst (1)

J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001).
[CrossRef]

Other (1)

G. K. Batchelor, An Introduction to Fluid Mechanics (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental Set-up. (a) Defining the Coordinate System: The blue arrow denotes the flow direction, y, through the microchannel (MC), situated on the objective lens (OL); z = 0 at the coverslip and x = 0 at the left channel wall. (b) Focusing the light in y: A cylindrical lens (CL) creates a line of light. (c) Spreading the light in x: In this dimension the cylindrical lens (CL) does not alter the laser light. In all figures the excitation illumination is shown in green, while the emission is shown in red. The asterisks in (b) and (c) denote the focal plane of the objective and its conjugate plane outside of the microscope.

Fig. 2.
Fig. 2.

Flow Visualization: (a) A stack of movie frames, It (x,y): the green line represents the fixed laser illumination. (b) A raw kymograph Iy (x,t), the intensity at fixed y for the duration for the movie, at z = 3μm in a sample at ϕ = 0.2. (c) Processed kymographs for three different heights, z =1, 3, and 5μm. Longer streaks represent slower moving particles. Each kymograph in (b) and (c) is approximately 75 μm wide and 25 ms long.

Fig. 3.
Fig. 3.

Velocity profiles from auto-correlations: Each image displays the auto-correlation of a kymograph in the time domain, c 0(xt). Dark regions represent strong correlations. The width in the time dimension is proportional to the length of the particle tracks, and inversely proportional to velocity. The peaks are centered at Δt=0. The results on the left and right correspond to z = 1 and 6 μm at ϕ= 0.1; each image is 75 μm wide with a maximum time lag of 20 ms. The insets show time-traces of the auto-correlation at x = 66μm.

Fig. 4.
Fig. 4.

Velocity profile from cross-correlation: (a) Kymographs are constructed from two lines separated by Δy. The same patterns, offset in the time dimension, can be seen in each. The kymographs are 50 μm wide and 625 ms long. (b) The intensity of each image gives the magnitude of the cross-correlation c Δy (xt); dark regions represent strong correlations. The location of the maximum at each x, Δt =τ, is inversely proportional to particle velocity. Δt = 0 is at the bottom of the images. Both τ and the width of the peaks vary across the channel. The results on the left and right correspond to z = 3 and 9 μm. For each image, ϕ = 0.05, Δy = .51μm, the width is 50 μm and the maximum time lag is approximately 400 ms. The insets show time-traces of the cross-correlation at x = 12μm.

Fig. 5.
Fig. 5.

Three-dimensional velocity profiles: Each set of colored points represents the measured velocity profile at a different height in the channel, and the solid lines are the analytical solution, given in Equation 3. (a) Results for a sample at ϕ=0.05 flowing with a maximum velocity of about 50 μm/s in a channel 50 mm wide. (b) Results for a sample at ϕ=0.1 flowing with a maximum velocity of about 1500 μm/s in a channel 75 μm wide.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c 0 ( x , Δ t ) = I ˜ y ( x , t + Δ t ) I ˜ y x t t
c Δ y ( x , Δ t ) = I ˜ y ( x . t + Δ t ) I ˜ y + Δ y x t t
v ¯ x ¯ z ¯ = 1 2 z ¯ ( 1 z ¯ ) 4 n = 0 sin [ ( 2 n + 1 ) π z ¯ ] ( 2 n + 1 ) 3 π 3 ( cosh [ ( 2 n + 1 ) π ( x ¯ 1 2 w ¯ ) ] cosh [ ( 2 n + 1 ) π 2 w ¯ ] )

Metrics