Abstract

We present a novel method for rapidly acquiring optical coherence tomography (OCT) images at multiple backscattering angles. By angularly compounding these images, high levels of speckle reduction were achieved. Signal-to-noise ratio (SNR) improvements of 3.4 dB were obtained from a homogeneous tissue phantom, which was in good agreement with the predictions of a statistical model of speckle that incorporated the optical parameters of the imaging system. In addition, the fast acquisition rate of the system (10 kHz A-line repetition rate) allowed angular compounding to be performed in vivo without significant motion artifacts. Speckle-reduced OCT images of human dermis show greatly improved delineation of tissue microstructure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
    [CrossRef]
  2. D. C. Adler, T. H. Ko, and J. G. Fujimoto. "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter." Opt. Lett. 29, 2878 (2004).
    [CrossRef]
  3. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005).
    [CrossRef]
  4. J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
    [CrossRef] [PubMed]
  5. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
    [CrossRef]
  6. N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
    [CrossRef] [PubMed]
  7. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging," Opt. Express 14, 4736-4745 (2006).
    [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
    [CrossRef] [PubMed]
  9. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  10. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser, Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  11. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003)
    [CrossRef] [PubMed]
  12. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  13. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, "Speckle statistics in optical coherence tomography," J. Opt. Soc. Am. A 22, 593-596 (2005).
    [CrossRef]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]

2006

2005

2004

2003

2000

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

1997

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

Adler, D. C.

Bashkansky, M.

Boppart, S. A.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging," Opt. Express 14, 4736-4745 (2006).
[CrossRef] [PubMed]

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

Hassler, K.

Huber, R.

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003)
[CrossRef] [PubMed]

Karamata, B.

Ko, T. H.

Lasser, T.

Laubscher, M.

Marks, D. L.

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser, Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

Ralston, T. S.

Reintjes, J.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Vakoc, B. J.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Yang, I-K

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

J. Biomed. Opt.

N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Med.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I-K Yang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Angle Resolved OCT System Schematic (a) and sample arm optics (b). PC: polarization controller; Circ: circulator; C: collimator; P: polarizer; PS: polarization splitter; BD: balanced receiver; SOA: semiconductor optical amplifier; DG: diffraction grating; BS: beam splitter; M: mirror; L: achromatic doublet lens. L1: f = 35 mm; L2: f = 50 mm; L3: f = 35mm; L4: f = 75 mm. The dashed region in (b) is oriented perpendicularly with respect to the plane of the interferometer.

Fig. 2.
Fig. 2.

Scattering geometry employed in the speckle model showing the incident beam traversing the center of the lens L1 (focal length f) and light backscattered at angle θ. After traversing L1, the backscattered light is radially displaced by a distance of x.

Fig. 3.
Fig. 3.

A representative angular backscattering distribution corresponding to a single polarization channel, obtained from one resolution element in the tissue phantom (a), and the corresponding normalized cross-correlation function.

Fig. 4.
Fig. 4.

SNR as a function of the number of compounded angles for signals acquired from a homogeneous tissue phantom.

Fig. 5.
Fig. 5.

OCT images of human finger tip acquired in vivo with no angular compounding (a); angular compounding with 2(b), 4(c), 7(d), 16(e) and 32 (f) angular samples. Speckle reduction with angular compounding enhances the contrast between neighboring structures, as highlighted by the insets corresponding to the dashed region in (a). The scale bar corresponds to 250 μm. The transverse extension of the image is 7 mm. S: sweat duct emerging from the lower papillary dermis (PD) into the upper stratum corneum (SC).

Fig. 6.
Fig. 6.

OCT images of human finger tip acquired in-vivo with 2160 A-lines (a); and with 40×2160 = 86400 A-lines (b). In case (b), sets of 40 consecutive A-lines were averaged, yielding 2160 A-lines in the displayed image. The angular scanning galvanometer was held fixed in both cases, so that images were obtained from a single angular sample. The scale bar corresponds to 250 μm. The transverse extension of the image is 7 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( x ) = K ( x ) G ( x ) .

Metrics