Abstract

The authors of the work: ‘Chromosomal analysis and identification based on optical tweezers and raman spectroscopy’ [Opt. Express 14, 5385 (2006], claim that they have been able to identify and differentiate between three human chromosomes with an optical-tweezer - Raman Spectroscopic experimental (LTRS) set-up. The results and conclusions as they are presented in the paper are questionable, however, when the spectral data and data analysis are studied in greater detail.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy

Jenifer F. Ojeda, Changan Xie, Yong-Qing Li, Fred E. Bertrand, John Wiley, and Thomas J. McConnell
Opt. Express 14(12) 5385-5393 (2006)

Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy: reply

Jenifer F. Ojeda, Changan Xie, Yong-Qing Li, Fred E. Bertrand, John Wiley, and Thomas J. McConnell
Opt. Express 15(10) 6000-6002 (2007)

Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing

Duo Lin, Zuci Zheng, Qiwen Wang, Hao Huang, Zufang Huang, Yun Yu, Sufang Qiu, Cuncheng Wen, Min Cheng, and Shangyuan Feng
Opt. Express 24(21) 24750-24759 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Ojeda, C. Xie, Y-Q. Li, F. E. Bertrand, J. Wiley, and T. J. McConell, “Chromosomal analysis and identification based on optical tweezers and raman spectroscopy,” Opt. Express 14, 5385 (2006).
    [Crossref] [PubMed]
  2. G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Comp. 12, 2385–2404 (2000).
    [Crossref]
  3. N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
    [Crossref] [PubMed]
  4. S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
    [Crossref]

2006 (1)

2005 (1)

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

2004 (1)

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

2000 (1)

G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Comp. 12, 2385–2404 (2000).
[Crossref]

Anouar, F.

G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Comp. 12, 2385–2404 (2000).
[Crossref]

Axelson, D. E.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Baudat, G.

G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Comp. 12, 2385–2404 (2000).
[Crossref]

Bertrand, F. E.

De Moor, B.

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

De Smet, F.

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

Guillou, C.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Heberger, K.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Li, Y-Q.

Mariani, C.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

McConell, T. J.

Ojeda, J. F.

Pochet, N.

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

Reiero, F.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Rezzi, S.

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Suykens, J.

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

Wiley, J.

Xie, C.

Anal. Chim. Acta (1)

S. Rezzi, D. E. Axelson, K. Heberger, F. Reiero, C. Mariani, and C. Guillou, “Classification of olive oils using high throughput flow [1]H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks,” Anal. Chim. Acta 552, 13–24 (2005).
[Crossref]

Bioinformatics (1)

N. Pochet, F. De Smet, J. Suykens, and B. De Moor, “Systematic benchmarking of micro array data classification: assessing the role of nonlinearity and dimensionality reduction,” Bioinformatics 20, 3185–3195 (2004).
[Crossref] [PubMed]

Neural Comp. (1)

G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Comp. 12, 2385–2404 (2000).
[Crossref]

Opt. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics