Abstract

Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e2 modal width of 25μm and a length of 600μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation. (Wiley, New York, 1984).
  2. S. John,"Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  5. S. Noda, M, Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two dimensional photonic crystal laser by unit cell structure design," Science,  293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  6. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
    [CrossRef] [PubMed]
  7. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  8. L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
    [CrossRef] [PubMed]
  9. J. C. Knight and P. St. J. Russell, "New ways to guide light," Science 296, 276-277 (2002).
    [CrossRef] [PubMed]
  10. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  11. E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
    [CrossRef]
  12. T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
    [CrossRef]
  13. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2004).
    [CrossRef]
  14. R. F. Kazarinov, and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE21, 144-150 (1985).
    [CrossRef]
  15. H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
    [CrossRef]
  16. G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
    [CrossRef]
  17. W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
    [CrossRef]

2006 (3)

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

2004 (4)

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2004).
[CrossRef]

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

2003 (2)

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

2002 (1)

J. C. Knight and P. St. J. Russell, "New ways to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Noda, M, Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two dimensional photonic crystal laser by unit cell structure design," Science,  293, 1123-1125 (2001).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1997 (1)

1987 (2)

S. John,"Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1985 (1)

R. F. Kazarinov, and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE21, 144-150 (1985).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Benisty, H.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Biensturan, P.

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

Birks, T. A.

Capasso, F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Choi, J. M.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

Colombelli, R.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Cuisin, C.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

DeRose, G. A.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

Derouin, E.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Drisse, O.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Duan, G. H.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Forchel, A.

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

Gentner, J.L.

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

Gmachl, C. F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Goldstein, L.

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

Green, W.

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

Guther, R.

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

Happ, T. D.

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

Henry, C. H.

R. F. Kazarinov, and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE21, 144-150 (1985).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. John,"Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kamp, M.

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

Kazarinov, R. F.

R. F. Kazarinov, and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE21, 144-150 (1985).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Knight, J. C.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Legouezigou, L.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Legouezigou, O.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Noda, S.

S. Noda, M, Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two dimensional photonic crystal laser by unit cell structure design," Science,  293, 1123-1125 (2001).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Pommereau, F.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Poon, J. K. S.

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

Russell, P. St. J.

Scherer, A.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Scheuer, J.

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

Schwoob, E.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Shams-Zadeh-Amis, A. M.

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

Sivco, D. L.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Troccoli, M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Weisbuch, C.

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

Wenzel, H.

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yariv, A.

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Zhu, L.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, "Electrically pumped two-dimensional Bragg grating lasers," Opt. Lett. 31, 1863-1865 (2006).
[CrossRef] [PubMed]

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

T. D. Happ, M. Kamp, A. Forchel, J.L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal coupleddefect laser diode," Appl. Phys. Lett. 82, 4-6 (2003).
[CrossRef]

W. Green, J. Scheuer, G. A. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. F. Kazarinov, and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE21, 144-150 (1985).
[CrossRef]

H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amis, and P. Biensturan, "A comparative study of higher order Bragg gratings : couple-mode theory versus mode expansion modelling," IEEE J. Quantum Electron. QE46, 64-70 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv and A. Scherer, "Two-dimensional Bragg Grating Lasers defined by Electron-Beam Lithography," J. Vac. Sci. Technol. B 24, 2926-2930 (2006).
[CrossRef]

Opt. Express (2)

E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouezigou, O. Legouezigou, and F. Pommereau, "Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides," Opt. Express 8, 1569-1574 (2004).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. John,"Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Science (5)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. Noda, M, Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two dimensional photonic crystal laser by unit cell structure design," Science,  293, 1123-1125 (2001).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russell, "New ways to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation. (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of a fabricated photonic crystal laser with a waveguide core. (a) a is the transverse lattice constant, b is the longitudinal lattice constant, and W is the core width. (b) The cross section structure. (c) Planar geometry of the photonic crystal lasers, with gain provided by the multiple quantum well layers.

Fig. 2.
Fig. 2.

Scanning electron-microscope images of a polymer-planarized two-dimensional photonic crystal laser. (a) Rectangular array of etched holes with a waveguide core. (b) Polyimide-filled holes each with a radius of 100nm. The images are taken before the deposition of electrical contacts.

Fig. 3.
Fig. 3.

(a)The L-I curve of the structure with a = 1.0μm and b = 400nm. (b)Lasing spectra above the threshold (with J = 1.1Jth ) for structures with different lattice constants. Single-mode operation is observed for the structure with a = 400nm and b = 1.0μm. The inset shows the spectrum for the single mode laser near threshold.

Fig. 4.
Fig. 4.

Near- and far- field profiles for the measured photonic crystal lasers. (a) Experimentally observed near-field profiles for the single-mode (red line) and a multi-mode structure (gray line) above threshold. For comparison, a numerically calculated near-field profile is also shown (purple line). For this simulated mode, the 1/e 2 modal width is approximately 26μm , which matches closely with the experimentally observed value of 25μm (b) Experimentally observed far-field pattern. The far-field single lobe has a FWHM of 2.9°.

Fig. 5.
Fig. 5.

Simulation results for the single-mode photonic crystal laser structure. (a) Dispersion relation of effective-index guided modes (circles) superimposed on dispersion relation of the cladding photonic crystal (dotted lines). The inset shows the detail around the bandgap of the dispersion of index guided modes (b),(c)The out of plane component of the magnetic field profiles at various points of the dispersion curve (d) Group velocity of the effective index-guided modes in the vicinity of the mini-bandgap.

Fig. 6.
Fig. 6.

Photonic crystal dispersion relation with the Bloch wavenumber Kx = 0

Fig. 7.
Fig. 7.

Schematic of the coupling between different wavevectors. The backward propagating field (blue arrow) is coupled to the sideway propagating fields (purple arrows) by the reciprocal lattice vectors (gray arrows).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω ( K y ) = c n avg ( 2 πp a ) x ̂ + ( 2 πq b + K y ) ŷ ,

Metrics