Abstract

We have simulated the elastic light scattering by small dielectric particles with different shapes as well as different compositions. Backscattered angularly resolved Mueller images are obtained from the simulation. Our results show that the images are not only sensitive to the shape, size and orientation of the particle, but also sensitive to the composition. Thus the Mueller images act in reality like a Mueller-microscope, and can thus lead to the detection and classification of aerosols.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Henderson, "The looming threat of bioterrorism," Science 283, 1279-1282 (1999).
    [CrossRef] [PubMed]
  2. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
    [CrossRef] [PubMed]
  3. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
    [CrossRef]
  4. B. D. Cameron, M. J. Rakovic, M. Mehrbeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cot, "Measurement and calculationof the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
    [CrossRef]
  5. A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).
  6. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, "Characterizing and monitoring respiratory aerosols by light scattering," Opt. Lett. 28, 589 (2003).
    [CrossRef] [PubMed]
  7. K. S. Yee, "Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  8. Yang, P. , K. N. Liou, M. I. Mishchenko, and B.-C. Gao, "An efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols," Appl. Opt. 39, 3727-3737 (2000).
    [CrossRef]
  9. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, Boston, MA, 2000).
  10. PhilipJ. Wyatt, "Differential Light Scattering: a Physical Method for Identifying Living Bacterial Cells," Appl. Opt. 7, 1879 (1968).
    [CrossRef] [PubMed]

2003 (2)

A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).

Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, "Characterizing and monitoring respiratory aerosols by light scattering," Opt. Lett. 28, 589 (2003).
[CrossRef] [PubMed]

2002 (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

D. A. Henderson, "The looming threat of bioterrorism," Science 283, 1279-1282 (1999).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

1968 (1)

1966 (1)

K. S. Yee, "Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

Anumula, H.

A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).

Aptowicz, K. B.

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Cameron, B. D.

Chang, R. K.

Cot, G. L.

Eversole, J. D.

Fernandez, G. L.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Gao, B.-C.

Hart, M.

Henderson, D. A.

D. A. Henderson, "The looming threat of bioterrorism," Science 283, 1279-1282 (1999).
[CrossRef] [PubMed]

Hill, S. C.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Kattawar, G. W.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

B. D. Cameron, M. J. Rakovic, M. Mehrbeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cot, "Measurement and calculationof the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
[CrossRef]

Li, Y.

A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).

Liou, K. N.

Lucht, R. P.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Mehrbeoglu, M.

Mishchenko, M. I.

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Nezhuvingal, A. A.

A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).

Opatrny, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Pan, Y. L.

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Philip,

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Pinnick, R. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Rakovic, M. J.

Rastegar, S.

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Sokolov, A. V.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Wang, L. V.

Yang,

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

Zubairy, M. S.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Aerosol. Sci. Technol. (1)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, "Fluorescence particle counter for detecting airborne bacteria and other biological particles," Aerosol. Sci. Technol. 23, 653-664 (1995).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Antennas Propag. (1)

K. S. Yee, "Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," Proc. Natl. Acad. Sci. USA 99,10994-11001 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Nezhuvingal, Y. Li, H. Anumula, B. D. Cameron, "Mueller matrix optical imaging with application to tissue diagnostics," Proc. SPIE 4961, 67-146 (2003).

Science (1)

D. A. Henderson, "The looming threat of bioterrorism," Science 283, 1279-1282 (1999).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, Boston, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Particle geometries used in this study: (a) a homogenous ellipsoid with a major axis of 1.0 μm and a minor axis of 0.8 μm; (b) the same ellipsoid with a centered core and one layer coat; (c) homogenous cylinders with heights 1.0 μm or 2.0 μm, and width 0.5 μm; (d) the refractive index for (b).

Fig. 2.
Fig. 2.

(a) An experimental setup to measure the backscattered light in [6]. This experimental setup collects most of the backscattered light and projects it to the detector. (b) Coordinates used in this paper. The scatterer is fixed in the yz-plane, θ is the angle between the symmetry axis of the scatterer and z axis.

Fig. 3.
Fig. 3.

A complete set of Mueller images for broadside illumination of the homogenous ellipsoid with a major axis of 1.0 μm and a minor axis of 0.8 μm, the refractive index is 1.34 and the illuminating wavelength is 0.5 μm.

Fig. 4.
Fig. 4.

Comparison for Mueller elements m11 and m44 between homogenous ellipsoid and spore at different orientations. Both spores have a major axis of 1.0 μm and a minor axis of 0.8 μm, the illuminating wavelength is 0.5 μm.

Fig. 5.
Fig. 5.

Comparison for Mueller element m11 and m44 between the homogenous ellipsoid, the spore and the homogenous cylinder for broadside illumination.

Fig. 6.
Fig. 6.

Comparison for Mueller element m11 and m44 between homogenous cylinders with different heights of 1.0 μm and 2.0 μm, and the same diameter of 0.5 μm, refractive index is 1.34 and illuminating wavelength is 0.5 μm.

Fig. 7.
Fig. 7.

Same as Fig. 5 except for the Mueller images for forward scattering.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = 1 k 2 m 11 ( θ , ϕ ) ,

Metrics