Abstract

Toward a practical light source for two-photon bioimaging, we have generated kilowatt peak power of 0.77 μm wavelength and 5 ps optical pulse via second-harmonic generation of the amplified output from a gain-switched 1.55 μm semiconductor laser. This compact scheme and stable optical-pulse-source has been successfully used for the two-photon fluorescence bioimaging of actin filaments in PtK2 cells.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Web, "Two-photon excitation in laser scanning microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200,83-104 (2000).
    [CrossRef] [PubMed]
  3. A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
    [CrossRef]
  4. P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
    [CrossRef]
  5. D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
    [CrossRef]
  6. K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, "Two-photon-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diode-pumped Cr:LiSrAlFl laser," Opt. Lett. 21,1411-1413 (1996).
    [CrossRef] [PubMed]
  7. J. Bewersdorf and S.W. Hell, "Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz," J. Microsc. 191,28-38 (1998).
    [CrossRef]
  8. T. Yoda, H. Yokoyama, K. Sato, H. Taniguchi, and H. Ito, "High-peak-power picosecond optical-pulse generation with a gain-switched semiconductor laser, and high-efficiency wavelength conversion," presented at the Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), CFM2-5, Tokyo, Japan, July 2005.
  9. H. Yokoyama, M. Shirane, Y. Sasaki, H. Ito, and H. Taniguchi, "Supercontinuum generation in 800-nm wavelength region with semiconductor laser pulses," presented at the Nonlinear Optics, ThB3, Waikoloa, Hawaii, Aug. 2004.
  10. Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
    [CrossRef]
  11. H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

2003

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

2002

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

2000

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200,83-104 (2000).
[CrossRef] [PubMed]

1999

A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
[CrossRef]

1998

J. Bewersdorf and S.W. Hell, "Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz," J. Microsc. 191,28-38 (1998).
[CrossRef]

1996

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, "Two-photon-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diode-pumped Cr:LiSrAlFl laser," Opt. Lett. 21,1411-1413 (1996).
[CrossRef] [PubMed]

1992

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Web, "Two-photon excitation in laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Abe, K.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Amos, W. B.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

Bewersdorf, J.

J. Bewersdorf and S.W. Hell, "Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz," J. Microsc. 191,28-38 (1998).
[CrossRef]

Centonze, V. E.

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

Crittenden, S.

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

Curley, P. F.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

Denk, W.

Ferguson, A. I.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

Hell, S.W.

J. Bewersdorf and S.W. Hell, "Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz," J. Microsc. 191,28-38 (1998).
[CrossRef]

Holtom, G. R.

A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
[CrossRef]

Kanto, S.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Knox, W. H.

König, K.

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200,83-104 (2000).
[CrossRef] [PubMed]

Kotoh, M.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Kubota, Y.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Maeda, S.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Meng, Z.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Nakata, Y.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Nishimura, N.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Okada, T.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Sakaguchi, S.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Web, "Two-photon excitation in laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Svoboda, K.

Taniguchi, H.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Teshima, T.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

Tohyama, O.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Tsuda, S.

Web, W. W.

W. Denk, J. H. Strickler, and W. W. Web, "Two-photon excitation in laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

White, J.

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

White, J. G.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

Wokosin, D. L.

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

Xie, X. S.

A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
[CrossRef]

Zumbush, A.

A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
[CrossRef]

Bioimaging

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4,208-214 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata, and T. Okada, "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping," IEEE Photon. Technol. Lett. 15,525-527 (2003).
[CrossRef]

J. Microsc.

J. Bewersdorf and S.W. Hell, "Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz," J. Microsc. 191,28-38 (1998).
[CrossRef]

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200,83-104 (2000).
[CrossRef] [PubMed]

Mitsubishi Cable Ind. Rev.

H. Taniguchi, M. Kotoh, S. Maeda, K. Abe, and O. Tohyama, "Development of wavelength converter based on quasi-phase-matched PPMgLN waveguide," Mitsubishi Cable Ind. Rev.(JIHOU) 99,29-34 (2002).

Opt. Lett.

Opt. Quantum Electron.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustained mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24,851-859 (1992).
[CrossRef]

Phys. Rev. Lett.

A. Zumbush, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Web, "Two-photon excitation in laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other

T. Yoda, H. Yokoyama, K. Sato, H. Taniguchi, and H. Ito, "High-peak-power picosecond optical-pulse generation with a gain-switched semiconductor laser, and high-efficiency wavelength conversion," presented at the Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), CFM2-5, Tokyo, Japan, July 2005.

H. Yokoyama, M. Shirane, Y. Sasaki, H. Ito, and H. Taniguchi, "Supercontinuum generation in 800-nm wavelength region with semiconductor laser pulses," presented at the Nonlinear Optics, ThB3, Waikoloa, Hawaii, Aug. 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental configuration for generating high-peak-power picosecond optical pulses with a semiconductor laser. The two-photon fluorescence microscope is also indicated in the dashed-line-surrounding area.

Fig. 2.
Fig. 2.

Optical spectra at 1 kW peak power optical pulses from the low-nonlinear-effect EDFA (a) and a conventional EDFA (b).

Fig. 3.
Fig. 3.

Two-photon images of polystyrene microspheres taken with 774 nm optical pulses at repetition rate of 2 MHz (a) and 20 MHz (b).

Fig. 4.
Fig. 4.

Two-photon excited fluorescence intensity image of actin filaments in PtK2 cell stained with Alexa Fluor 488. The optical peak power was 1.1 kW at repetition rate of 1 MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = k τ T P peak 2
I = k T τ P av 2

Metrics