Abstract

We demonstrated that a broad and robust absorption band for a wide range of incidence angles and for both polarizations can be realized using a one-dimensional metallic-dielectric quasi-periodic structure, when the thickness of the constituent metal is comparable to its skin depth. The absorptance in such peculiar structure can exceed 99% to meet different applications. Furthermore, employing the effective medium approach, a theoretical expression has been deduced to instruct the working frequency of the absorption band. By tuning the permittivity and thickness of the constituent layers, the robust absorption band can cover the wavelength from the visible to the near-infrared.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
    [Crossref]
  3. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “AAll-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
    [Crossref]
  4. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
    [Crossref] [PubMed]
  5. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
    [Crossref]
  6. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683–1685 (2003).
    [Crossref] [PubMed]
  7. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
    [Crossref]
  8. J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
    [Crossref]
  9. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
    [Crossref]
  10. A. Rodríguez and F. Domínguez-Adame, “Optical absorption in Fibonacci lattices at finite temperature,” Phys. Rev. B 56, 10737–10739 (1997).
    [Crossref]
  11. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
    [Crossref]
  12. J. W. Dong, P. Han, and H. Z. Wang, “Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals,” Chin. Phys. Lett. 20, 1963–1965 (2003).
    [Crossref]
  13. S. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13, 4113 (2005).
    [Crossref] [PubMed]
  14. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

2005 (2)

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[Crossref]

S. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13, 4113 (2005).
[Crossref] [PubMed]

2004 (3)

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “AAll-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]

2001 (1)

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

1997 (1)

A. Rodríguez and F. Domínguez-Adame, “Optical absorption in Fibonacci lattices at finite temperature,” Phys. Rev. B 56, 10737–10739 (1997).
[Crossref]

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Abdulhalim, I.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[Crossref]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “AAll-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Domínguez-Adame, F.

A. Rodríguez and F. Domínguez-Adame, “Optical absorption in Fibonacci lattices at finite temperature,” Phys. Rev. B 56, 10737–10739 (1997).
[Crossref]

Dong, J. W.

J. W. Dong, P. Han, and H. Z. Wang, “Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals,” Chin. Phys. Lett. 20, 1963–1965 (2003).
[Crossref]

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[Crossref]

Dutton, R. W.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[Crossref]

El-Kady, I.

Elson, J. M.

Fan, S.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[Crossref]

Feng, S.

Fleming, J. G.

Fu, R. T.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Han, P.

J. W. Dong, P. Han, and H. Z. Wang, “Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals,” Chin. Phys. Lett. 20, 1963–1965 (2003).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “AAll-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]

Joannopoulos, J. D.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

Li, Z. Y.

Lin, S. Y.

Liu, X. H.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

Lusk, D.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

Overfelt, P. L.

Placido, F.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Rodríguez, A.

A. Rodríguez and F. Domínguez-Adame, “Optical absorption in Fibonacci lattices at finite temperature,” Phys. Rev. B 56, 10737–10739 (1997).
[Crossref]

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[Crossref]

Shen, Y. F.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Veronis, G.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[Crossref]

Wang, H. Z.

J. W. Dong, P. Han, and H. Z. Wang, “Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals,” Chin. Phys. Lett. 20, 1963–1965 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Yu, J. F.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Zhu, Z. Q.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Zi, J.

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Chin. Phys. Lett. (1)

J. W. Dong, P. Han, and H. Z. Wang, “Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals,” Chin. Phys. Lett. 20, 1963–1965 (2003).
[Crossref]

J. Appl. Phys. (1)

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys.: Condens. Matter 16, L51–L56 (2004).
[Crossref]

Nature (London) (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “AAll-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]

Opt. Commun. (1)

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

A. Rodríguez and F. Domínguez-Adame, “Optical absorption in Fibonacci lattices at finite temperature,” Phys. Rev. B 56, 10737–10739 (1997).
[Crossref]

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004).
[Crossref] [PubMed]

Other (2)

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Photonic band structure of the (a) S2 (period), (b) S3 and (c) S4 structure, respectively. The real part of permittivity of tungsten and the low refractive index 1.38 of the dielectric layer are taken for calculation. The thicknesses of the metal and dielectric layers are taken to be 10 and 180 nm, respectively. Insets are the schematics of the unit cells of three corresponding Fibonacci MDQPS. The black regions represent the thin metallic layers while the gray regions represent the dielectric layers. The abscissa is in unit of π/a, where a is the lattice constant of an unit cell. K// means the component of wavevector paralleled to the interfaces.

Fig. 2.
Fig. 2.

Calculated absorption spectra (solid lines) for the S3 structures with 7 periods. The constituent metal is tungsten (a) and silver (b) respectively. The other parameters of the structures are the same as Fig. 1. The absorption spectra of a uniform tungsten (a) and silver (b) slab with a thickness equal to 100 nm (dashed lines) is shown as a reference.

Fig. 3.
Fig. 3.

(color online) Calculated absorption spectra for different order Fibonacci MDQPS with tungsten layer. The S2 , S3 , S5 , and S7 with period number 10, 7, 3 and 1 are shown by solid, dashed, dot and dashed-dot lines, respectively. The high absorption data above 96% is shown in the inset. The vertical dashed lines mark the wavelength range of the total absorption. The other parameters of the structures are the same as Fig. 1.

Fig. 4.
Fig. 4.

The angle-dependent absorption band (above 90%) of the S5 structure with tungsten metallic layer for both polarizations. The solid and hollow symbols represent the TE and TM polarization, respectively. The square and circle symbols represent the upper and lower edge of the strong absorption band. The other parameters of the structures are the same as Fig. 1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T DMD = ( cos δ eff j sin δ eff ε eff j ε eff sin δ eff cos δ eff )
ε eff = n 2 [ sin 2 δ 2 cosh δ m 1 2 ( n i n + n n i ) sinh δ m 1 2 ( n i n n n i ) cos 2 δ d sinh δ m sin 2 δ 2 cosh δ m 1 2 ( n i n + n n i ) sinh δ m + 1 2 ( n i n n n i ) cos 2 δ d sinh δ m ]
ε eff = n 2 [ 2 δ d cosh δ m n i n sinh δ m 2 δ d cosh δ m + n n i sinh δ m ]
ε eff = ε 0 eff ( 1 ω p eff 2 ω 2 )
ω p eff 2 = c tanh δ m 2 ε 0 d ω p
ε 0 eff = 2 ε 0 ω p d 2 ω p d + c tanh δ m

Metrics