Abstract

We introduce a new high-speed Fourier-domain optical coherence tomography (FD-OCT) scheme based on a stretched pulse supercontinuum source. A wide-band short pulse of a supercontinuum source of which output spectrum spanned a wavelength range from 1,200 nm to 1,550 nm was stretched to a long pulse of 70-ns duration by using a dispersive fiber due to the group-velocity dispersion, and it was used directly as frequency-swept light for FD-OCT. The OCT spectral interferogram was acquired in the time domain and converted into the spectral domain by the pre-calibrated time-to-wavelength relation. Using this stretched-pulse OCT (SP-OCT) scheme, we have demonstrated an ultra-high-speed axial-line scanning rate of 5 MHz. The axial resolution of 8 µm was achieved without re-calibration of the sweep characteristic owing to the passive nature of the frequency-sweeping mechanism.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry

Sucbei Moon and Dug Young Kim
Opt. Express 15(23) 15129-15146 (2007)

Optical frequency domain reflectometry based on real-time Fourier transformation

Yongwoo Park, Tae-Jung Ahn, Jean-Claude Kieffer, and José Azaña
Opt. Express 15(8) 4597-4616 (2007)

Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman
Opt. Express 15(23) 15464-15479 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  3. S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [Crossref] [PubMed]
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
    [Crossref] [PubMed]
  5. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–2165 (2003).
    [Crossref] [PubMed]
  6. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref] [PubMed]
  7. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref] [PubMed]
  8. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [Crossref] [PubMed]
  9. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
    [Crossref]
  10. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
    [Crossref]
  11. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref] [PubMed]
  13. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
    [Crossref]
  14. J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
    [Crossref]
  15. S. Moon and D. Y. Kim, “Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a disersion-shifted fiber,” Opt. Express 14, 270–278 (2006).
    [Crossref] [PubMed]
  16. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical grating and single-shot spectral measurements reveal fine structure in microstructured-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [Crossref]
  17. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [Crossref] [PubMed]
  18. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [Crossref] [PubMed]
  19. R. Huber, Desmond C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [Crossref] [PubMed]

2006 (3)

2005 (2)

2004 (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
[Crossref]

2003 (6)

2002 (2)

1997 (4)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Adler, Desmond C.

Apolonski, A.

Bizheva, K.

Boudoux, C.

Bouma, B. E.

Cense, B.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chinn, S. R.

Choma, M.

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
[Crossref]

de Boer, J. F.

Drexler, W.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, Desmond C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
[Crossref]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gu, X.

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Iftimia, N.

Izatt, J.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
[Crossref]

Kim, D. Y.

Kimmel, M.

Knight, J. C.

Kulhavy, M.

Leitgeb, R.

Lexer, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Moon, S.

O’Shea, P.

Park, B. H.

Pierce, M. C.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Russell, P. St.

Sarunic, M.

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Shreenath, A. P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Taira, K.

Tearney, B. J.

Tearney, G. J.

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Trebino, R.

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wojtkowski, M.

Xu, L.

Yang, C.

Yun, S. H.

Zeek, E.

Appl. Opt. (1)

Electron. Lett. (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Opt. Express (8)

S. Moon and D. Y. Kim, “Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a disersion-shifted fiber,” Opt. Express 14, 270–278 (2006).
[Crossref] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[Crossref] [PubMed]

S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–2165 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

Opt. Lett. (7)

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
[Crossref]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical grating and single-shot spectral measurements reveal fine structure in microstructured-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

R. Huber, Desmond C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref] [PubMed]

Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” Photon. Technol. Lett. 16, 1140–1142 (2004).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic principle of the time-wavelength-domain spectrum measurement technique: The amplitude of a wide-band pulse is acquired in the time domain after being stretched by a dispersive fiber with the pre-calibrated data of the time-to-wavelength conversion.

Fig. 2.
Fig. 2.

(a). Spectrum of the filtered supercontinuum after passing through the 20-km DSF and (b) the measured relative time delays according to the wavelengths.

Fig. 3.
Fig. 3.

(a). Schematic diagram of the experimental setup and (b) an example of the oscilloscope trace captured with a single reflection point at the sample position.

Fig. 4.
Fig. 4.

Measured reflection profile of a ~20-µm thick transparent plastic film placed on a thick glass plate.

Fig. 5.
Fig. 5.

(a). PSF of a -15-dB reflection point and (b). the system noise with no optical input in dB.

Fig. 6.
Fig. 6.

(a). Obtained tomographic image (50 A-lines) and (b) a microscope image of lint-free paper. The data of the tomogram was acquired within a period of 10 µs with an A-line scan rate of 5 MHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ ( λ ) = τ 0 + L · λ 0 λ D ( λ ) d λ
Δ τ L D ( λ ) · Δ λ
s ( λ ) ε ( λ ) Δ λ = h v · Q ( τ ) η q · ( Δ τ L D ( λ ) ) 1 = h v L D ( λ ) η q · i ( τ ) .
E output = T r ( t ) P ( t ) · e j ( z " k ( t ) ω t ) + T s ( t ) P ( t ) · e j ( ( z " + 2 z ) k ( t ) ω t ) · r e j ϕ
i ( t ) = η ( t ) q h v ( t ) [ T r ( t ) P ( t ) + T s ( t ) P ( t ) r 2 + 2 T r ( t ) · T s ( t ) · r P ( t ) cos ( 2 k ( t ) z + φ ) ] .
δ τ ( δ τ sc 2 + δ τ pd 2 ) 1 2
δ λ ( λ ) Δ λ Δ τ = δ τ = δ τ L D ( λ ) .
Δ z eff λ c 2 4 · δ λ = λ c 2 L D ( λ ) 4 · δ τ

Metrics