Abstract

We demonstrate a simple, in-line scheme for determining the duration of ultrafast pulses in the focal region of a high-numerical-aperture microscope objective. Photocurrent generated in a GaAsP photodiode by two-photon absorption of orthogonally-polarized laser beams that meet at a slight angle is used to autocorrelate lasers non-interferometrically. Crosscorrelation between two lasers is also demonstrated. This setup, which can be built readily by a microscope user who is not an optics expert, allows for the rapid characterization of pulses that can be hundreds of fs long while making it possible for all of the laser intensity to be employed for nonlinear optical microscopy after the pulse duration has been measured.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by Simultaneous Second-Harmonic Generation and Two-Photon Microscopy," Opt. Lett. 25, 320-322 (2000).
    [CrossRef]
  3. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, "Third Harmonic Generation Microscopy," Opt. Express 3, 315-324 (1998).
    [CrossRef] [PubMed]
  4. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
    [CrossRef]
  5. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
    [CrossRef] [PubMed]
  6. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
    [CrossRef] [PubMed]
  7. T. Baldacchini, and J. T. Fourkas, "Three-dimensional nanofabrication using multiphoton absorption," in Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, and K. Putyera, eds. (Marcel Dekker, New York, 2004), pp. 3905-3915.
  8. D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
    [CrossRef]
  9. H. B. Sun, and S. Kawata, "Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems," J. Lightwave Technol. 21, 624-633 (2003).
    [CrossRef]
  10. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear Type II Second-Harmonic-Generation frequency-resolved Optical Gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
    [CrossRef]
  11. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based Second-Harmonic-Generated Collinear Frequency-Resolved Optical Gating Pulse Characterization at the Focal Plane of a High-Numerical-Aperture Lens," Opt. Lett. 29, 2282-2284 (2004).
    [CrossRef] [PubMed]
  12. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, Norwell, MA, 2002).
    [CrossRef]
  13. M. Muller, J. Squier, and G. J. Brakenhoff, "Measurement of Femtosecond Pulses in the Focal Point of a High-Numerical-Aperture Lens by 2-Photon Absorption," Opt. Lett. 20, 1038-1040 (1995).
    [CrossRef] [PubMed]
  14. A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
    [CrossRef]
  15. K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
    [CrossRef]
  16. D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
    [CrossRef]
  17. F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004).
    [CrossRef] [PubMed]
  18. F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
    [CrossRef]
  19. F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
    [CrossRef] [PubMed]
  20. A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
    [CrossRef]
  21. P. Langlois, and E. P. Ippen, "Measurement of Pulse Asymmetry by Three-Photon-Absorption Autocorrelation in a GaAsP Photodiode," Opt. Lett. 24, 1868-1870 (1999).
    [CrossRef]
  22. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
    [CrossRef]
  23. S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
    [CrossRef]
  24. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, New York, 1986).
  25. J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
    [CrossRef]

2005 (2)

D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
[CrossRef]

D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
[CrossRef]

2004 (4)

F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004).
[CrossRef] [PubMed]

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based Second-Harmonic-Generated Collinear Frequency-Resolved Optical Gating Pulse Characterization at the Focal Plane of a High-Numerical-Aperture Lens," Opt. Lett. 29, 2282-2284 (2004).
[CrossRef] [PubMed]

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

2003 (2)

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

H. B. Sun, and S. Kawata, "Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems," J. Lightwave Technol. 21, 624-633 (2003).
[CrossRef]

2001 (3)

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

2000 (2)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by Simultaneous Second-Harmonic Generation and Two-Photon Microscopy," Opt. Lett. 25, 320-322 (2000).
[CrossRef]

1999 (3)

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
[CrossRef]

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

P. Langlois, and E. P. Ippen, "Measurement of Pulse Asymmetry by Three-Photon-Absorption Autocorrelation in a GaAsP Photodiode," Opt. Lett. 24, 1868-1870 (1999).
[CrossRef]

1998 (2)

1997 (1)

1995 (1)

1992 (1)

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Amat-Roldan, I.

Artigas, D.

Baldini, G.

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

Baltuska, A.

Barty, C. P. J.

Blanchard-Desce, M.

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Brakenhoff, G. J.

Canioni, L.

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

Cannone, F.

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

Cheng, J. X.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Chirico, G.

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

Cormack, I. G.

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

der Au, J. A.

D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
[CrossRef]

Diaspro, A.

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Fayer, M. D.

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Fittinghoff, D. N.

D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
[CrossRef]

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear Type II Second-Harmonic-Generation frequency-resolved Optical Gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

Fourkas, J. T.

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Fung, B. K. K.

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

Gaeta, A. L.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
[CrossRef]

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

Ghirelli, A.

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Jhaveri, S. J.

D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
[CrossRef]

Kawata, S.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Kung, P.

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Langlois, P.

Loza-Alvarez, P.

Martinez-Rosas, M. E.

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

Mertz, J.

Millard, A. C.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
[CrossRef]

Moll, K. D.

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Moreaux, L.

Muller, M.

Ober, C. K.

D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
[CrossRef]

Potma, E. O.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

Quercioli, F.

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004).
[CrossRef] [PubMed]

Ranka, J. K.

Razeghi, M.

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Sandre, O.

Santran, S.

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

Sarger, L.

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

Sou, I. K.

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

Squier, J.

D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
[CrossRef]

M. Muller, J. Squier, and G. J. Brakenhoff, "Measurement of Femtosecond Pulses in the Focal Point of a High-Numerical-Aperture Lens by 2-Photon Absorption," Opt. Lett. 20, 1038-1040 (1995).
[CrossRef] [PubMed]

Squier, J. A.

Streltsov, A. M.

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Sun, H. B.

Sun, T.

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

Sweetser, J. N.

Tiribilli, B.

F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004).
[CrossRef] [PubMed]

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

Trebino, R.

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear Type II Second-Harmonic-Generation frequency-resolved Optical Gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Vassalli, M.

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004).
[CrossRef] [PubMed]

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Walker, D.

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Webb, W.

W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

Wilson, K. R.

Wong, G. K. L.

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

Wong, K. S.

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

Xie, X. S.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Yang, D.

D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Biophys. J. (1)

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004).
[CrossRef]

J. Chem. Phys. (1)

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

J. Cryst. Growth (1)

K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Microsc. (1)

F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Microscopy Research and Technique (1)

F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004).
[CrossRef]

MRS Bull. (1)

D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005).
[CrossRef]

Opt. Commun. (1)

D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Oxford (1)

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (3)

T. Baldacchini, and J. T. Fourkas, "Three-dimensional nanofabrication using multiphoton absorption," in Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, and K. Putyera, eds. (Marcel Dekker, New York, 2004), pp. 3905-3915.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, Norwell, MA, 2002).
[CrossRef]

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for non-interferometric autocorrelation and cross-correlation. FM=flip-down mirror, Pol=polarizer, HWP=half-wave plate, PBC=polarizing beam cube, BE=beam expander. The crossing angle between the two beams is greatly exaggerated for clarity.

Fig. 2.
Fig. 2.

Autocorrelations of laser 1 (Coherent Mira Basic) as a function of interference fringes in the crossing region.

Fig. 3.
Fig. 3.

Autocorrelation data for laser 1 (bottom trace) and laser 2 (center trace). The top trace is the cross-correlation of the two lasers, and the red trace is the predicted ideal crosscorrelation in the absence of timing jitter.

Metrics