Abstract

Fluorescence from a layer of Rhodamine 6G (R6G) is observed to be enhanced strongly if a dielectric grating deposited onto a gold film is used as a substrate. The fluorescence enhancement has been studied as a function of the grating periodicity and the angle of incidence of the excitation light. The enhancement mechanism is consistent with excitation of surface-plasmon-polaritons on the metal film surface. The observed phenomenon may be promising in sensing applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Li, W. Lukosz, and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power," J. Opt. Soc. Am. 67,1607 (1977).
    [CrossRef]
  2. W. Lukosz and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane interface. II. Radiation patterns of perpendicular oriented dipoles," J. Opt. Soc. Am. 67, 1615 (1977).
    [CrossRef]
  3. W. Lukosz "Light emission by magnetic and electric dipoles close to a plane interface. III. Radiation patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am. 69,1495 (1979).
    [CrossRef]
  4. W.H. Weber and C. F. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236 (1979).
    [CrossRef] [PubMed]
  5. R.R. Chance, A. Prock, and R. Silbey, " Molecular fluorescence and energy transfer near interfaces," in Advances in Chemical Physics, I. Prigogine and S.R. Rice, eds., pp.1-65, (Wiley, New York, 1978).
  6. J. Enderlein, T. Ruckstuhl, and S. Seeger, "Highly efficient optical detection of surface-generated fluorescence," Appl. Opt. 38, 724 (1999).
    [CrossRef]
  7. J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247, 1 (1999).
    [CrossRef]
  8. A. Minardo, R. Bernini, F. Mottola and L. Zeni, "Optimization of metal-clad waveguides for sensitive fluorescence detection," Opt. Express 14, 3512 (2006).
    [CrossRef] [PubMed]
  9. D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
    [CrossRef] [PubMed]
  10. J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
    [CrossRef]
  11. J.R. Lakowicz, "Radiative decay engineering 3: surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).
    [CrossRef]
  12. C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
    [CrossRef]
  13. J. R. Lakowicz,"Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, " Anal. Biochem. 337,171-194 (2005).
    [CrossRef] [PubMed]
  14. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855 (2005).
    [CrossRef] [PubMed]
  15. F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef] [PubMed]
  16. T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85,3968 (2004).
    [CrossRef]

2006 (1)

2005 (3)

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz,"Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, " Anal. Biochem. 337,171-194 (2005).
[CrossRef] [PubMed]

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85,3968 (2004).
[CrossRef]

J.R. Lakowicz, "Radiative decay engineering 3: surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

2003 (2)

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

1999 (2)

1979 (2)

1977 (2)

Bernini, R.

Bocchio, N.

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Budach, W.

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

Chibout, S.D.

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

Eagen, C. F.

Enderlein, J.

Geddes, C.D.

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Gryczynski, I.

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Gryczynski, Z.

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Kreiter, M.

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Kunz, R. E.

Lakowicz, J. R.

J. R. Lakowicz,"Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, " Anal. Biochem. 337,171-194 (2005).
[CrossRef] [PubMed]

Lakowicz, J.R

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Lakowicz, J.R.

J.R. Lakowicz, "Radiative decay engineering 3: surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

Li, K.

Lukosz, W.

Malicka, J.

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Minardo, A.

Mottola, F.

Neuschafer, D.

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85,3968 (2004).
[CrossRef]

Ruckstuhl, T.

Seeger, S.

Stefani, F.D.

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Stoyanova, N.

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Vasiliev, K.

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Wanke, C.

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

Weber, W.H.

Zeni, L.

Anal. Biochem. (2)

J.R. Lakowicz, "Radiative decay engineering 3: surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

J. R. Lakowicz,"Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, " Anal. Biochem. 337,171-194 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85,3968 (2004).
[CrossRef]

Biosens. Bioelectron. (1)

D. Neuschafer, W. Budach, C. Wanke, and S.D. Chibout," Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Biosens. Bioelectron. 18,489 (2003).
[CrossRef] [PubMed]

Chem. Phys. (1)

J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247, 1 (1999).
[CrossRef]

J. Fluoresc. (1)

C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz,"Fluorescence News- Directional Surface Plasmon Coupled Emission," J. Fluoresc. l14, 119-123 (2004).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. D (1)

J.R Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C.D. Geddes, "Topical Review: Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D 36, 240-249 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

F.D. Stefani, K. Vasiliev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Other (1)

R.R. Chance, A. Prock, and R. Silbey, " Molecular fluorescence and energy transfer near interfaces," in Advances in Chemical Physics, I. Prigogine and S.R. Rice, eds., pp.1-65, (Wiley, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Device structures

Fig. 2.
Fig. 2.

(a) AFM image of the nano-stripe gratings; (b) Dimensions of the pattern

Fig. 3.
Fig. 3.

The intensity comparison of R6G/PMMA gratings on (a) ITO/glass substrate; (b) Au/glass substrate.

Fig. 4.
Fig. 4.

Fluorescence under normal excitation - (a) the arrangement of grating periodicity (in nm). (b) FOM pictures taken under the polarized Hg Lamp. E field is parallel to the grating trenches (exposure time: 250s). (c) The sample was rotated 90 degrees clockwise. E field is perpendicular to the grating trenches (exposure time: 700s).

Fig. 5.
Fig. 5.

Polarization effect on gratings with normal incidence to the sample surface.

Fig. 6.
Fig. 6.

The geometry of the incident laser beam and angle definitions.

Fig. 7.
Fig. 7.

(a) α=30° Patterns with 841nm and 411nm periodicity are excited most strongly. (b) α=30° The pattern with 693nm periodicity fluoresce most strongly. (c) The pattern arrangement of (a) and (b).

Fig. 8.
Fig. 8.

Fluorescence emission vs. angle α for different gratings.

Fig. 9.
Fig. 9.

k* for different order n

Tables (1)

Tables Icon

Table 1: The relation between the coupling order n and the digital value of the image intensity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x * = k o sin θ sin α + ( 2 πn a ) = k sp
k y * = k o sin θ cos α = k sp
( k * ) 2 = ( k o sin θ cos α ) 2 + ( k o sin θ sin α + 2 πn a ) 2 = ( k sp ) 2

Metrics