D. Psaltis, S.R. Quake, and C. Yang,, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386, (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
C.V. Shank, J.E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” App. Phys. Lett. 18, 395–396 (1971).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
B. Bilenberg, B. Helbo, J.P. Kutter, and A. Kristensen, “Tunable Microfluidic Dye Laser,” Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206–209 (2003).
C.V. Shank, J.E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” App. Phys. Lett. 18, 395–396 (1971).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
B. Bilenberg, B. Helbo, J.P. Kutter, and A. Kristensen, “Tunable Microfluidic Dye Laser,” Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206–209 (2003).
C.V. Shank, J.E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” App. Phys. Lett. 18, 395–396 (1971).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
B. Bilenberg, B. Helbo, J.P. Kutter, and A. Kristensen, “Tunable Microfluidic Dye Laser,” Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206–209 (2003).
B. Bilenberg, B. Helbo, J.P. Kutter, and A. Kristensen, “Tunable Microfluidic Dye Laser,” Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206–209 (2003).
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. McDonald and G.M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref]
[PubMed]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
D. Psaltis, S.R. Quake, and C. Yang,, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386, (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
D. Psaltis, S.R. Quake, and C. Yang,, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386, (2006).
[Crossref]
[PubMed]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
C.V. Shank, J.E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” App. Phys. Lett. 18, 395–396 (1971).
[Crossref]
W.T. Silfvast, Laser Fundamentals (Cambridge, Cambridge, 2004).
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
J.C. McDonald and G.M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref]
[PubMed]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
D. Psaltis, S.R. Quake, and C. Yang,, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386, (2006).
[Crossref]
[PubMed]
A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, 1997).
J.C. McDonald and G.M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref]
[PubMed]
C.V. Shank, J.E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” App. Phys. Lett. 18, 395–396 (1971).
[Crossref]
J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” App. Phys. Lett. 86, 264101 (2005).
[Crossref]
D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
D. Psaltis, S.R. Quake, and C. Yang,, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386, (2006).
[Crossref]
[PubMed]
M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116 (2000).
[Crossref]
W.T. Silfvast, Laser Fundamentals (Cambridge, Cambridge, 2004).
A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, 1997).
B. Bilenberg, B. Helbo, J.P. Kutter, and A. Kristensen, “Tunable Microfluidic Dye Laser,” Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206–209 (2003).