Abstract

This paper presents a method to reconstruct the nonuniform background for camera-based quantitative evaluation of thin-layer chromatography (TLC). After analyzing the concave distribution feature of illumination produced by a linear light source on a plane, the paper then makes use of the feature and convex hull algorithm to find points belonging to the background. After that, B-spline is employed to reconstruct the background. An experiment is also made to test the performance of the method, which shows that the correlation coefficient between the linear samples is 0.9949 after removing the estimated background.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Poole, "Pannar chromatography at the turn of the century" J. Chromatogr. A 856, 399-427 (1999).
    [CrossRef] [PubMed]
  2. J. Sherma, "Planar chromatography," Anal. Chem. 78, 3841-3852 (2006).
    [CrossRef] [PubMed]
  3. I. Vovk and M. Prosek, "Reproducibility of densitometric and image analyzing quantitative evaluation of thin-layer chromatograms," J. Chromatogr. A 768, 329-336 (1997).
    [CrossRef]
  4. L. Zhang and X. G. Lin, "Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging," J. Chromatogr. A 1109, 273-278 (2006).
    [CrossRef] [PubMed]
  5. B. K. P Horn and R. W. Sjober, "Calculating reflectance map," Appl. Opt. 18, 1770-1779 (1979).
    [CrossRef] [PubMed]
  6. T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
    [CrossRef]
  7. Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
    [CrossRef]
  8. F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
    [CrossRef] [PubMed]
  9. M. Unser, "Splines: a perfect fit for signal and image processing," IEEE Signal Proc. Mag 16, 22-38 (1999).
    [CrossRef]

2006 (2)

J. Sherma, "Planar chromatography," Anal. Chem. 78, 3841-3852 (2006).
[CrossRef] [PubMed]

L. Zhang and X. G. Lin, "Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging," J. Chromatogr. A 1109, 273-278 (2006).
[CrossRef] [PubMed]

2002 (1)

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

1999 (2)

C. F. Poole, "Pannar chromatography at the turn of the century" J. Chromatogr. A 856, 399-427 (1999).
[CrossRef] [PubMed]

M. Unser, "Splines: a perfect fit for signal and image processing," IEEE Signal Proc. Mag 16, 22-38 (1999).
[CrossRef]

1998 (1)

F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
[CrossRef] [PubMed]

1997 (1)

I. Vovk and M. Prosek, "Reproducibility of densitometric and image analyzing quantitative evaluation of thin-layer chromatograms," J. Chromatogr. A 768, 329-336 (1997).
[CrossRef]

1985 (1)

T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
[CrossRef]

1979 (1)

Chan, T. P.

F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
[CrossRef] [PubMed]

Chau, F. T.

F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
[CrossRef] [PubMed]

Hori, H.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Horn, B. K. P

Inoue, Y.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Lin, X. G.

L. Zhang and X. G. Lin, "Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging," J. Chromatogr. A 1109, 273-278 (2006).
[CrossRef] [PubMed]

Misonou, T.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Nakamae, I.

T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
[CrossRef]

Nishita, T.

T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
[CrossRef]

Okamura, I.

T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
[CrossRef]

Poole, C. F.

C. F. Poole, "Pannar chromatography at the turn of the century" J. Chromatogr. A 856, 399-427 (1999).
[CrossRef] [PubMed]

Prosek, M.

I. Vovk and M. Prosek, "Reproducibility of densitometric and image analyzing quantitative evaluation of thin-layer chromatograms," J. Chromatogr. A 768, 329-336 (1997).
[CrossRef]

Saito, J.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Sakurai, T.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Sherma, J.

J. Sherma, "Planar chromatography," Anal. Chem. 78, 3841-3852 (2006).
[CrossRef] [PubMed]

Sjober, R. W.

Tokitomo, Y.

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Unser, M.

M. Unser, "Splines: a perfect fit for signal and image processing," IEEE Signal Proc. Mag 16, 22-38 (1999).
[CrossRef]

Vovk, I.

I. Vovk and M. Prosek, "Reproducibility of densitometric and image analyzing quantitative evaluation of thin-layer chromatograms," J. Chromatogr. A 768, 329-336 (1997).
[CrossRef]

Wang, J.

F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang and X. G. Lin, "Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging," J. Chromatogr. A 1109, 273-278 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. Sherma, "Planar chromatography," Anal. Chem. 78, 3841-3852 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bioinformatics (1)

F. T. Chau, T. P. Chan, and J. Wang. "TLCQA: quantitative study of thin-layer chromatography," Bioinformatics 14, 540-541 (1998).
[CrossRef] [PubMed]

Graphic. (1)

T. Nishita, I. Okamura, and I. Nakamae, "Shading models for point and linear sources," ACM T.Graphic. 4, 124-146 (1985).
[CrossRef]

IEEE Signal Proc. Mag (1)

M. Unser, "Splines: a perfect fit for signal and image processing," IEEE Signal Proc. Mag 16, 22-38 (1999).
[CrossRef]

J. Chromatogr. A (3)

C. F. Poole, "Pannar chromatography at the turn of the century" J. Chromatogr. A 856, 399-427 (1999).
[CrossRef] [PubMed]

I. Vovk and M. Prosek, "Reproducibility of densitometric and image analyzing quantitative evaluation of thin-layer chromatograms," J. Chromatogr. A 768, 329-336 (1997).
[CrossRef]

L. Zhang and X. G. Lin, "Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging," J. Chromatogr. A 1109, 273-278 (2006).
[CrossRef] [PubMed]

Opt. Rev. (1)

Y. Inoue, H. Hori, T. Sakurai, Y. Tokitomo, J. Saito, and T. Misonou, "Measurement of fluorescence quantum yield of ultraviolet absorbing substance extracted from red alga: porphyra yezoensis and its photothermal spectroscopy," Opt. Rev. 9, 75-87 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Linear light source. (b). Illumination distribution feature on the plane of (a) along y.

Fig. 2.
Fig. 2.

(a). Concave background. (b). Background with signal. (c). Convex hull of (b). (d). Background points found.

Fig. 3.
Fig. 3.

(a). Experimental instrumentation. (b) An image obtained by the camera in (a). (c) Illumination distribution feature of (a) along;;. (d) One column of (b).

Fig. 4.
Fig. 4.

(a). Finding the convex hull of Fig. 3(d). (b) Background points found for Fig. 3(d). (c) All the background points found for Fig. 3(b) (the white pixels). (d) The control points selected (cross points). (e) 3D form of the grid in (d). (f) The background reconstructed by B-spline surface. (g) 3D plot of Fig. 3(b). (h) (f) subtracting (g).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p ( x , y ) = L / 2 L / 2 I cos θ r 2 dl = L / 2 L / 2 Ih r 3 dl = L / 2 L / 2 Ih ( x 2 + ( l y ) 2 + h 2 ) 3 dl .
p ( x , y ) y = Ih ( ( y + L / 2 y ) 2 + x 2 + h 2 ) 3 Ih ( ( y L / 2 ) 2 + x 2 + h 2 ) 3 ,
2 p ( x , y ) y 2 = 3 Ih ( L / 2 + y ) ( ( L / 2 + y ) 2 + x 2 + h 2 ) 5 + 3 Ih ( y L / 2 ) ( ( y L / 2 ) 2 + x 2 + h 2 ) 5 .
y + L / 2 ( ( L / 2 + y ) 2 + x 2 + h 2 ) 5 = y L / 2 ( ( L / 2 + y ) 2 + x 2 + h 2 ) 5 .
x 2 = ( y L / 2 ) 2 / 5 ( ( y + L / 2 ) 2 h 2 ) ( y + L / 2 ) 2 / 5 ( ( y L / 2 ) 2 + h 2 ) ( y + L / 2 ) 2 / 5 ( y L / 2 ) 2 / 5 .
R = 1 n 1 i = 1 n ( f i f ̅ Sf ) ( g i g ̅ Sg ) ,

Metrics