Abstract

We propose a bacterial detection scheme which uses no biochemical markers and can be applied in a Point-of-Care setting. The detection scheme aligns asymmetric bacteria with an electric field and detects the optical scattering.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," IEEE EMBS 22, 33-42 (2003).
  2. R. D. Miller and T. B. Jones, "Electro-orientation of ellipsoidal erythrocytes. Theory and experiment," Biophys. J. 64, 1588-1595 (1993).
    [CrossRef] [PubMed]
  3. M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
    [CrossRef] [PubMed]
  4. O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
    [CrossRef] [PubMed]
  5. P. J. Wyatt and D. T. Phillips, "Structure of single bacteria from light scattering," J. Theor. Biol. 37, 493-501 (1972).
    [CrossRef] [PubMed]
  6. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
    [CrossRef]
  7. R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol. 15, 426-432 (1997).
    [CrossRef] [PubMed]
  8. R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).
  9. A. K. Bhunia and A. Lathrop, Pathogen Detection, Food-borne (McGraw- Hill, New York, NY, 2003).
  10. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  11. C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
    [PubMed]
  12. K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).
  13. M. Pezzlo, "Detection of urinary tract infections by rapid methods," Clin. Microbiol. Rev. 1, 268-280 (1988).
    [PubMed]

2005 (1)

R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).

2003 (2)

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," IEEE EMBS 22, 33-42 (2003).

2002 (2)

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
[PubMed]

2001 (1)

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

1999 (2)

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1997 (1)

R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol. 15, 426-432 (1997).
[CrossRef] [PubMed]

1993 (1)

R. D. Miller and T. B. Jones, "Electro-orientation of ellipsoidal erythrocytes. Theory and experiment," Biophys. J. 64, 1588-1595 (1993).
[CrossRef] [PubMed]

1988 (1)

M. Pezzlo, "Detection of urinary tract infections by rapid methods," Clin. Microbiol. Rev. 1, 268-280 (1988).
[PubMed]

1972 (1)

P. J. Wyatt and D. T. Phillips, "Structure of single bacteria from light scattering," J. Theor. Biol. 37, 493-501 (1972).
[CrossRef] [PubMed]

Alfano, R. R.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Alimova, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Bashir, R.

R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).

Buninb, V. D.

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gauthier, C.

C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
[PubMed]

Gomez-Sjoberg, R.

R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).

Guliya, O. I.

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Ignatov, O. V.

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

Ignatova, V. V.

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

Jones, T. B.

T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," IEEE EMBS 22, 33-42 (2003).

R. D. Miller and T. B. Jones, "Electro-orientation of ellipsoidal erythrocytes. Theory and experiment," Biophys. J. 64, 1588-1595 (1993).
[CrossRef] [PubMed]

Katz, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Kriegmaier, M.

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Markx, G. H.

R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol. 15, 426-432 (1997).
[CrossRef] [PubMed]

McCormick, S. A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Miller, R. D.

R. D. Miller and T. B. Jones, "Electro-orientation of ellipsoidal erythrocytes. Theory and experiment," Biophys. J. 64, 1588-1595 (1993).
[CrossRef] [PubMed]

Moore, M.

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

Morisette, D. T.

R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).

Muller, R. S.

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

Parameswaran, M.

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

Pethig, R.

R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol. 15, 426-432 (1997).
[CrossRef] [PubMed]

Pezzlo, M.

M. Pezzlo, "Detection of urinary tract infections by rapid methods," Clin. Microbiol. Rev. 1, 268-280 (1988).
[PubMed]

Phillips, D. T.

P. J. Wyatt and D. T. Phillips, "Structure of single bacteria from light scattering," J. Theor. Biol. 37, 493-501 (1972).
[CrossRef] [PubMed]

Roberts, K.

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

Rosen, R. B.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Rudolph, E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Savage, H. E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Shah, M. K.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Shchyogoleva, S. Y.

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

St-Pierre, Y.

C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
[PubMed]

Sukhorukov, V. L.

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Villemur, R.

C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
[PubMed]

Wolf, K.

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Wyatt, P. J.

P. J. Wyatt and D. T. Phillips, "Structure of single bacteria from light scattering," J. Theor. Biol. 37, 493-501 (1972).
[CrossRef] [PubMed]

Xu, M.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Zimmermann, M.

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Zimmermann, U.

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Biochim. Biophys. Acta. (1)

M. Kriegmaier, M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosaccharomyces pombe using electro rotation and electro orientation," Biochim. Biophys. Acta. 1568, 135-146 (2001).
[CrossRef] [PubMed]

Biophys. J. (1)

R. D. Miller and T. B. Jones, "Electro-orientation of ellipsoidal erythrocytes. Theory and experiment," Biophys. J. 64, 1588-1595 (1993).
[CrossRef] [PubMed]

Can. J. Elect. Comput. Eng. (1)

K. Roberts, M. Parameswaran, M. Moore, and R. S. Muller, "A silicon microfabricated aperture for counting cells using the aperture impedance technique," Can. J. Elect. Comput. Eng. 24, 109-113 (1999).

Clin. Microbiol. Rev. (1)

M. Pezzlo, "Detection of urinary tract infections by rapid methods," Clin. Microbiol. Rev. 1, 268-280 (1988).
[PubMed]

FEMS Microbiol. Lett. (1)

O. V. Ignatov, O. I. Guliya, S. Y. Shchyogoleva, V. D. Buninb, and V. V. Ignatova, "Effect of p-nitrophenol metabolites on microbial cell electro-optical characteristics," FEMS Microbiol. Lett. 214, 81-86 (2002).
[CrossRef] [PubMed]

IEEE EMBS (1)

T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," IEEE EMBS 22, 33-42 (2003).

IEEE J. MEMS (1)

R. Gomez-Sjoberg, D. T. Morisette, and R. Bashir, "Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism," IEEE J. MEMS 14, 829-838 (2005).

IEEE J. Quantum Electron. (1)

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Quantum Electron. 9, 277-287 (2003).
[CrossRef]

J. Med. Microbiol. (1)

C. Gauthier, Y. St-Pierre, and R. Villemur, "Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry," J. Med. Microbiol. 51, 192-200 (2002).
[PubMed]

J. Theor. Biol. (1)

P. J. Wyatt and D. T. Phillips, "Structure of single bacteria from light scattering," J. Theor. Biol. 37, 493-501 (1972).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Trends Biotechnol. (1)

R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol. 15, 426-432 (1997).
[CrossRef] [PubMed]

Other (1)

A. K. Bhunia and A. Lathrop, Pathogen Detection, Food-borne (McGraw- Hill, New York, NY, 2003).

Supplementary Material (2)

» Media 1: AVI (2510 KB)     
» Media 2: AVI (2531 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram of the optical setup.

Fig. 2.
Fig. 2.

Schematic diagram of the specimen holder. A 1 mm thick glass plate with a conductive electrode pattern in indium tin oxide (ITO) is separated from a thin cover glass with a spacer. The inset shows a sample of E. coli in urine aligned to the applied electric field between the electrodes.

Fig. 3.
Fig. 3.

Live E. coli bacteria under 500x magnification. (a) No electric field. The bacteria are aligned randomly. (b) Applied electric field in the horizontal direction. The bacteria are aligned to the electric field. (Online only, 2.45 MB) Initially, the movie shows the bacteria randomly aligned. Then, the electric field is applied and the bacteria align along the field. Note the larger bacteria align slower than the smaller bacteria.

Fig. 4.
Fig. 4.

Specimen holder which aligns bacteria in and out of the plane. (a) Schematic diagram of the parallel plate specimen holder. (b) Applied electric field in and out of the plane. Note the line from the upper right to the lower left of the image. The two electrodes are stacked on top of each other and are located to the left of this boundary. Bacteria to the left of this boundary align to the electric field, normal to the image plane, and appear as points. Bacteria that are immediately to the right of this boundary orient to the fringe fields from the electrodes, from the upper left to the lower right of the image. (Online only, 2.47 MB) Initially, the movie shows the bacteria randomly aligned. Then, the electric field is applied and the bacteria align to the field.

Fig. 5.
Fig. 5.

Optical scattering measurements at an angle of approximately 33 degrees. The solid curve shows the increase in the optical scattering when the electric field is turned on (between the vertically dashed lines) for 5·107 CFU/mL live E. coli in urine. The dashed curve shows the same measurement for filtered and sterilized urine with dead E. coli.

Fig. 6.
Fig. 6.

Rise and fall time of the optical scattering measurement at an angle of approximately 33 degrees. (a) Rise time of the bacteria alignment to the electric field is approximately 500 milliseconds. (b) Fall time of the bacteria alignment to the electric field is approximately 1.5 seconds.

Fig. 7.
Fig. 7.

Optical scattering with respect to bacteria concentration and angle of detector. (a) The measurement with 5·107 CFU/mL live E. coli. On average, there is approximately a 20% signal increase with the electric field on versus off. At the detector angle of 20 degrees, the signal increase is approximately 44%. (b) The measurement with 5·106 CFU/mL live E. coli. On average, there is approximately a 5% signal increase with the electric field on versus off. At the detector angle of 15 degrees, the signal increase is approximately 8%.

Metrics