Abstract

The difficulty of fusion splicing hollow-core photonic bandgap fiber (PBGF) to conventional step index single mode fiber (SMF) has severely limited the implementation of PBGFs. To make PBGFs more functional we have developed a method for splicing a hollow-core PBGF to a SMF using a commercial arc splicer. A repeatable, robust, low-loss splice between the PBGF and SMF is demonstrated. By filling one end of the PBGF spliced to SMF with acetylene gas and performing saturation spectroscopy, we determine that this splice is useful for a PBGF cell.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
    [CrossRef] [PubMed]
  2. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
    [CrossRef]
  3. J. Henningsen, J. Hald, and J. C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
    [CrossRef] [PubMed]
  4. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006).
    [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and J. C. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  7. T. Ritari, G. Genty, and H. Ludvigsen, "Supercontinuum and gas cell in a single microstructured fiber cell," Opt. Lett. 30, 3380-3382 (2005).
    [CrossRef]
  8. A. Yablon, Optical fiber fusion splicing (Springer, Heidelberg, 2005).
  9. P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow core PCF," Opt. Lett. 31, 2538-2540 (2006).
    [CrossRef] [PubMed]
  10. P. J. Bennett, T. M. Monro, and D. J. Richardson, "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Opt. Lett. 24, 1203-1205 (1999).
    [CrossRef]
  11. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
    [PubMed]
  12. Crystal Fibre A/S, http://www.crystal-fibre.com/support/faq.shtm.
  13. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  14. CorningS MF-28e optical fiber product information, http://www.corning.com/opticalfiber/.
  15. Crystal Fibre A/S HC19-1550-01 product information, http://www.crystal-fibre.com.
  16. Crystal Fibre A/S HC-1550-02 product information, http://www.crystal-fibre.com.
  17. J. H. Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 11, 1365-1370 (2003).
    [CrossRef] [PubMed]
  18. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-8 (1971).
    [PubMed]
  19. C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 11.
  20. G.-i. Kweon and I.-S. Park, "Splicing losses between dissimilar optical waveguides," J. of Lightwave Technol. 17, 690-703 (1999).
    [CrossRef]

2006 (2)

2005 (6)

2004 (1)

2003 (2)

1999 (2)

1971 (1)

Benabid, F.

Bennett, P. J.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Bourliaguet, B.

Chong, J. H.

Corwin, K. L.

Couny, F.

Croteau, A.

Demokan, M. S.

Émond, F.

Faheem, M.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
[CrossRef]

Genty, G.

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
[CrossRef]

Gloge, D.

Hald, J.

Hansen, T. P.

Henningsen, J.

Ho, H. L.

Hoo, Y. L.

Jin, W.

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Kweon, G.-i.

G.-i. Kweon and I.-S. Park, "Splicing losses between dissimilar optical waveguides," J. of Lightwave Technol. 17, 690-703 (1999).
[CrossRef]

Light, P. S.

Ludvigsen, H.

Monro, T. M.

Naweed, A.

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
[CrossRef]

Paré, C.

Park, I.-S.

G.-i. Kweon and I.-S. Park, "Splicing losses between dissimilar optical waveguides," J. of Lightwave Technol. 17, 690-703 (1999).
[CrossRef]

Petersen, J. C.

Peterson, J. C.

Proulx, A.

Rao, M. K.

Richardson, D. J.

Ritari, T.

Russell, P. S. J.

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
[CrossRef]

Simonsen, J. C.

Sørensen, T.

Thapa, R.

Tuominen, J.

Vallée, R.

Weaver, O. L.

Xiao, L.

Zhao, C.

Appl. Opt. (1)

J. of Lightwave Technol. (1)

G.-i. Kweon and I.-S. Park, "Splicing losses between dissimilar optical waveguides," J. of Lightwave Technol. 17, 690-703 (1999).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005).
[CrossRef]

Other (6)

A. Yablon, Optical fiber fusion splicing (Springer, Heidelberg, 2005).

Crystal Fibre A/S, http://www.crystal-fibre.com/support/faq.shtm.

CorningS MF-28e optical fiber product information, http://www.corning.com/opticalfiber/.

Crystal Fibre A/S HC19-1550-01 product information, http://www.crystal-fibre.com.

Crystal Fibre A/S HC-1550-02 product information, http://www.crystal-fibre.com.

C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The fusion splicer geometry. Two variable parameters, gap/overlap and offset, determine the position of the fibers with respect to the electrode axis.

Fig. 2.
Fig. 2.

The relative loss with respect to the butt-coupled transmission from the SMF to the 10.9 µm PBGF during the fusion procedure. The gap curve is estimated from the splice parameters, the Ericsson FSU-995-FA fusion splicer manual, and the relative loss curve. The values in parenthesis indicate altered parameters for new electrodes.

Fig. 3.
Fig. 3.

A micrograph showing the splice between the SMF and 10.9 µm PBGF. Picture courtesy of the GaN Group in the Kansas State University Physics Department.

Fig. 4.
Fig. 4.

Chamber used to evacuate and fill the PBGF with acetylene gas for saturated absorption spectroscopy.

Fig. 5.
Fig. 5.

Saturated absorption spectra in (a) 10.9 µm and (b) 20 µm diameter PBGFs. Fiber 1 is 0.78 m long, spliced to SMF using a conventional arc splicer using the technique described in this paper. The P(11) spectrum was taken at 29 mW and 0.9 torr. Fiber 2 is 2.0 m long, spliced to SMF by Crystal Fibre A/S using a filament heating splicer, and its spectrum is taken of the weaker P(12) transition at 17 mW and 0.8 torr. Fiber 3 is the unspliced 10.9 µm fiber of 0.9 m long, the P(11) spectrum was taken at 30 mW of pump power at 0.6 torr. Fiber 4 is 0.4 m long, spliced with an arc splicer to SMF, the P(11) spectrum was taken at 34 mW and 0.9 torr. Fiber 5 is unspliced fiber 0.78 m long, and the P(11) spectrum was taken at 29 mW of pump power at 0.7 torr.

Tables (2)

Tables Icon

Table 1. Fiber Parameters for the PBGF and the Single-Mode Fiber

Tables Icon

Table 2. Measured Non-Reciprocal Splice Loss between PBGF to SMF

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

10 Log 10 ( 4 r 1 2 r 2 2 ( r 1 2 + r 2 2 ) 2 ) .

Metrics