Abstract

We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a “clocked” traffic of micro beads, and size-selective guiding of beads along optical “conveyor belts”.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998).
    [CrossRef]
  2. M. J. Lang and S.M. Block, "Resource Letter: LBOT-1: Laser based optical tweezers," Am. J. Phys. 71,201-21 (2003).
    [PubMed]
  3. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
    [CrossRef]
  4. R. L. Eriksen, V. R. Daria, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10,597-602 (2002).
    [PubMed]
  5. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11,2053-2059 (2003).
    [CrossRef] [PubMed]
  6. P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
    [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
    [CrossRef] [PubMed]
  8. A. Jesacher, S. Fürhapter, S. Bernet, andM. Ritsch-Marte, "Size-selective trapping with optical cogwheel tweezers," Opt. Express 12,4129-4135 (2004).
    [CrossRef] [PubMed]
  9. D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
    [CrossRef] [PubMed]
  10. K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12,1144-1149 (2004).
    [CrossRef] [PubMed]
  11. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90,133901 (2003).
    [CrossRef] [PubMed]
  12. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
    [CrossRef]
  13. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, "Optical trapping of threedimensional structures using dynamic holograms," Opt. Express 11,3562-3567 (2003).
    [CrossRef] [PubMed]
  14. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12,220-226 (2004).
    [CrossRef] [PubMed]
  15. C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
    [CrossRef]
  16. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12,2243-2250 (2004).
    [CrossRef] [PubMed]
  17. M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, "Optimized holographic optical traps," Opt. Express 13,5831-5845 (2005).
    [CrossRef] [PubMed]
  18. E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
    [CrossRef]
  19. K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005).
    [CrossRef]
  20. K. Ladavac and D. G. Grier, "Statistically Locked-in Transport Through Periodic Potential Landscapes," Phys. Rev. Lett. 92,130602(2004).
    [CrossRef]
  21. M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989).
    [CrossRef] [PubMed]

  22. [CrossRef]
  23. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568 (2003).
    [CrossRef]

2005 (4)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
[CrossRef]

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005).
[CrossRef]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, "Optimized holographic optical traps," Opt. Express 13,5831-5845 (2005).
[CrossRef] [PubMed]

2004 (6)

2003 (8)

2002 (2)

R. L. Eriksen, V. R. Daria, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10,597-602 (2002).
[PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
[CrossRef] [PubMed]

2001 (1)

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

1998 (1)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998).
[CrossRef]

Bernet, S.

Bertocchi, C.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Birch, M.

Block, S.M.

M. J. Lang and S.M. Block, "Resource Letter: LBOT-1: Laser based optical tweezers," Am. J. Phys. 71,201-21 (2003).
[PubMed]

Burns, M.M.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

Cooper, J.

Courtial, J.

Crain, J.

Curtis, J. E.

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90,133901 (2003).
[CrossRef] [PubMed]

Daria, V. R.

Dearing, M. T.

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

Dholakia, K.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
[CrossRef]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, "Optical trapping of threedimensional structures using dynamic holograms," Opt. Express 11,3562-3567 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]


[CrossRef]

Dietl, P.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998).
[CrossRef]

Eriksen, R. L.

Fournier, J.-M.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Frick, M.

Fürhapter, S.

Garcés-Chávez, V.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
[CrossRef]

Glückstad, J.

Golovchenko, J.A.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Grier, D.

Grier, D. G.

K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005).
[CrossRef]

K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12,1144-1149 (2004).
[CrossRef] [PubMed]

K. Ladavac and D. G. Grier, "Statistically Locked-in Transport Through Periodic Potential Landscapes," Phys. Rev. Lett. 92,130602(2004).
[CrossRef]

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90,133901 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
[CrossRef] [PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
[CrossRef] [PubMed]

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

Haller, T.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Heggarty, K.

Hossack, W. J.

Jesacher, A.

Jordan, P.

Korda, P. T.

P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
[CrossRef] [PubMed]

Laczik, Z. J.

Ladavac, K.

K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005).
[CrossRef]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, "Optimized holographic optical traps," Opt. Express 13,5831-5845 (2005).
[CrossRef] [PubMed]

K. Ladavac and D. G. Grier, "Statistically Locked-in Transport Through Periodic Potential Landscapes," Phys. Rev. Lett. 92,130602(2004).
[CrossRef]

K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12,1144-1149 (2004).
[CrossRef] [PubMed]

Lang, M. J.

M. J. Lang and S.M. Block, "Resource Letter: LBOT-1: Laser based optical tweezers," Am. J. Phys. 71,201-21 (2003).
[PubMed]

Leach, J.

Lee, S. -H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

McGloin, D.

Melville, H.

Milne, G. F.

Padgett, M. J.

Polin, M.

Putz, G.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Ravasio, A.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

Ritsch-Marte, M.

Roichman, Y.

Sheets, S. A.

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

Sibbett, W.

Sinclair, G.

Singer, W.

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
[CrossRef]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, "Optical trapping of threedimensional structures using dynamic holograms," Opt. Express 11,3562-3567 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

Taylor, M. B.

P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
[CrossRef] [PubMed]

Theofanidou, E.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

Wrigh, E. M.

Am. J. Phys. (1)

M. J. Lang and S.M. Block, "Resource Letter: LBOT-1: Laser based optical tweezers," Am. J. Phys. 71,201-21 (2003).
[PubMed]

Appl. Phys. Lett. (1)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005).
[CrossRef]

Biophys J. (1)

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005).
[CrossRef]

Europhys. Lett. (1)

K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000).
[CrossRef]

Opt. Express (8)

Phys. Rev. E (2)

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]


[CrossRef]

Phys. Rev. Lett. (3)

K. Ladavac and D. G. Grier, "Statistically Locked-in Transport Through Periodic Potential Landscapes," Phys. Rev. Lett. 92,130602(2004).
[CrossRef]

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90,133901 (2003).
[CrossRef] [PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instr. (1)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001).
[CrossRef]

Supplementary Material (7)

» Media 1: AVI (2401 KB)     
» Media 2: AVI (1480 KB)     
» Media 3: AVI (1236 KB)     
» Media 4: AVI (2511 KB)     
» Media 5: AVI (1280 KB)     
» Media 6: AVI (1911 KB)     
» Media 7: AVI (2097 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for diffractive steering of optical tweezers at an inverted (“hanging”) air-liquid interface. A photograph of the object chamber is displayed at the upper left corner. The object chamber consists of a plastic disc of 1 cm height with a conical drill in its center. At the bottom the chamber has a circular opening with a diameter of about 200 microns. If the chamber is filled with a liquid, surface tension prevents leaking through the tiny hole. The air-liquid surface can manipulated by optical tweezers from below by an inverted microscope. For the laser tweezers a high resolution (1920×1200 pixels) reflective spatial light modulator (SLM) is illuminated by an expanded collimated laser beam. At the SLM various image windows displaying computer-designed off-axis holograms (two examples displayed in the figure)are displayed. Only laser light diffracted from these holograms into the desired first order is guided by a lens to the rear input aperture of a microscope objective, and creates a programmed light field distribution at the air-liquid interface.

Fig. 2.
Fig. 2.

(Movie fig2.avi 2.1 MB) High-speed rotation of multiple particles in a doughnut mode of helical index 20 induces a flow of the whole surface, as seen by the rotation of particles in the surroundings of the “vortex pump”. The corresponding movie is displayed in real time.

Fig. 3.
Fig. 3.

(Movie fig3.avi 2.4 MB) Generation of surface flow into interactively selectable directions. Four doughnut modes with the same helical index but selectable rotation orientations (indicated by yellow and orange semicircles in the figures) are projected onto the surface. The light modes are “filled” with trapped beads which rotate into the selected directions and create a corresponding surface flow (direction of flow also indicated in the pictures by arrows). By changing the rotational direction of one of the doughnut modes from sequence to sequence (indicated by orange arrows) the surface flow can be controlled. This is demonstrated by the transport of unbound beads in the corresponding movie, which indicate the flow of the liquid in the surface.

Fig. 4.
Fig. 4.

(Movie fig4.avi 1.5 MB) Efficient mixing of fluid and particles trapped in a light field consisting of two concentric doughnut modes with different diameter and helicity, and two different signs of their respective helical indices. The particles trapped at the inner and outer light ring are rotating in opposite directions (indicated by yellow semi-circles in the figure), creating vortices of the liquid at the surface in the area between the two light rings. In the movie these vortices are demonstrated to mix a bunch of micro-beads in the area between the two circles.

Fig. 5.
Fig. 5.

(Movie fig5.avi 1.2 MB) Two doughnut modes with different helicities and different diameters are excentrically arranged. The two helicities have the same sign, such that their induced rotations have the same orientations. The inner light ring is filled with beads, such that a surface flow is induced. The movie shows the hydrodynamic coupling between the vortex surface flow induced by the inner rotating ring of beads and the outer orbiting bead. The velocity of the single bead depends on its distance from the inner ring. The right inset is a plot of the tangential bead velocity as a function of its angular position. The closest distance between the two rings is obtained at the zero angle position. The plot shows that the maximal bead velocity is obtained before the bead actually reaches the zero angle position (note that the positive angle direction is measured counter-clockwise, whereas the beads rotate clockwise).

Fig. 6.
Fig. 6.

(Movie fig6.avi 2.5 MB) Long range interaction of beads moving in a light field and a hydrodynamic flow field induced by a rotating vortex pump (center). Two beads are trapped in the light potential of an outer doughnut ring which induces a counter-clockwise rotation. However, an inner ring filled with beads induces a clockwise surface flow. At a certain position one of the two outer beads is stopped due to a balance between the counterclockwise acting optical scattering force and the clockwise acting surface flow. However, the bead is released from its equilibrium position as soon as the second bead approaches to a distance of several bead diameters. In the following, the two beads change their roles, i.e. the travelling bead becomes trapped, whereas the formerly trapped bead advances around the orbit. The whole movement repeats periodically, as can be seen in the attached movie.

Fig. 7.
Fig. 7.

(Movie fig7.avi 1.3 MB) Clocked bead traffic. Beads are orbiting at two intersecting doughnut modes of different helicities and rotational directions (indicated by yellow semi-circles). The two intersection points (indicated by arrows) are stable traps for beads. The movie shows that the trapped beads are pushed away by other beads circling around the doughnut modes, which subsequently get trapped themselves.

Fig. 8.
Fig. 8.

(Movie fig8.avi 1.9 MB) Size selective splitting of the pathes of micro beads. The movie shows two beads of different sizes (indicated by orange arrows) circling around a doughnut mode with a high helical index of 80 (indicated by the outer dashed yellow circle). As the beads approach an excentrically arranged inner light ring (doughnut mode with a helical index of 30) the larger bead is drawn into the inner circle, whereas the smaller bead proceeds on its orbit on the outer circle.

Metrics