Abstract

We demonstrated the fabrication of a phase shaper for generating a ‘doughnut mode’ laser beam using a thin, circular polymer film on a substrate. The fabrication method is based on a combination of spin-coating and drop-casting. The alignment procedure to get ideal ‘doughnut modes’ is described. The intensity distribution at the focus is analyzed with single molecule spectroscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams

Peter Dedecker, Benoît Muls, Johan Hofkens, Jörg Enderlein, and Jun-ichi Hotta
Opt. Express 15(6) 3372-3383 (2007)

Resolution scaling in STED microscopy

Benjamin Harke, Jan Keller, Chaitanya K. Ullal, Volker Westphal, Andreas Schönle, and Stefan W. Hell
Opt. Express 16(6) 4154-4162 (2008)

A STED microscope aligned by design

Dominik Wildanger, Johanna Bückers, Volker Westphal, Stefan W. Hell, and Lars Kastrup
Opt. Express 17(18) 16100-16110 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).
  2. D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett. 28, 740–742 (2003).
    [Crossref] [PubMed]
  3. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,” Opt. Express 12, 1417–1425 (2004).
    [Crossref] [PubMed]
  4. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  5. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
    [Crossref] [PubMed]
  6. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
    [Crossref]
  7. Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
    [Crossref]
  8. T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
    [Crossref]
  9. M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.
  10. O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
    [Crossref]
  11. J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective with high numerical aperture,” Opt. Lett. 25, 634–636 (2000).
    [Crossref]

2005 (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

2004 (3)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,” Opt. Express 12, 1417–1425 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (2)

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Born, M.

M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.

Daria, V. R.

Eggeling, C.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

Enderlein, J.

Engel, E.

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).

Fujii, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Fukuchi, N.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Glückstad, J.

Grasjo, L.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Hell, S. W.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

Igasaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Iketaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Ishiuchi, S.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

Karthaus, O.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Klar, T. A.

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Maruyama, N.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Masuda, M.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
[Crossref]

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Miyamoto, Y.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
[Crossref]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Omatsu, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Rodrigo, P. J.

Sakai, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Shimomura, M.

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Takeda, M.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
[Crossref]

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Wada, A.

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
[Crossref]

Watanabe, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.

Yamamoto, K.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Yuan, X.-C.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Zhang, D. W.

Chaos (1)

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, “Formation of ordered mesoscopic polymer arrays by dewetting,” Chaos 9, 308–314 (1999).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Opt. Eng. (1)

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136–1143 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613-1–066613-9 (2001).

PNAS (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS 102, 17565–17569 (2005).
[Crossref] [PubMed]

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of Vector Beams with Axially-Symmetric Polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[Crossref]

Other (2)

Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda “Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi ed, Proc. SPIE3740, 232–235 (1999).
[Crossref]

M. Born and E. Wolf, Principal of Optics, (Pergamon Press, Oxford, 1980) Chap. 7, Chap. 8, and Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electric field of the laser beam passing through the phase shaper. (a0: radius of the laser beam, a1: radius of circular thin film).

Fig. 2.
Fig. 2.

Simulated intensity distribution at the focus (a) in x-y plane, (b) in x-z plane (λ=633 nm, f=2.3 mm, a0=3 mm (incident laser beam radius), a1=2.12 mm (phase shifted field)). The intensity value is normalized to that of the non-apodized beam at the focus.

Fig. 3.
Fig. 3.

Scheme of phase shaper fabrication.

Fig. 4.
Fig. 4.

Phase shift as a function of concentration of PMMA solution. The phase shift at the center the circular polymer structure is analyzed from the shift of the fringes. One fringe shift corresponds to 2π phase shift.

Fig. 5.
Fig. 5.

Interferogram of phase shaper recorded at 633nm. The diameter of the polymer film is 2.7mm.

Fig. 6.
Fig. 6.

The Intensity distribution of phase shaped laser beam. (a) Schematic of the diameter of the phase shaper (A) and that of the laser beam (B). The ratio of the diameter of the laser beam and that of the phase shaper (B/A) are (b) 1.30, (c) 1.39, (d) 1.41, (e) 1.48, and (f) 1.56, respectively.

Fig. 7.
Fig. 7.

Fluorescence images of single TDI molecules. (a) without phase shaper, (b) with phase shaper, (c) zoom of one molecule in image b. The scale represents photon counts per 5 ms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π d λ 0 ( n polymer n air )
U ( P ) = 2 π i a 2 A λ f 2 e i ( f a ) 2 u 0 1 J 0 ( v ρ ) e 1 2 i u ρ 2 ρ d ρ
u = 2 π λ ( a f ) 2 z , v = 2 π λ ( a f ) r = 2 π λ a f x 2 + y 2

Metrics