Abstract

We analyze the resolution limit that can be achieved by means of spectral reshaping in optical coherence tomography images and demonstrate that the resolution can be improved by means of modelessly reshaping the source spectrum in postprocessing. We show that the optimal spectrum has a priory surprising “crater-like” shape, providing 0.74 micron axial resolution in free-space. This represents ~50% improvement compared to resolution using the original spectrum of a white light lamp.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
    [Crossref] [PubMed]
  2. Brett E. Bouma and Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)
  3. B. Bouma, G. Tearney, S. Boppart, M. Hee, M. Brezinski, and J. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 201486–1488 (1995)
    [Crossref] [PubMed]
  4. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 271800–1802 (2002)
    [Crossref]
  5. Wolfgang Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004)
    [Crossref] [PubMed]
  6. A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
    [Crossref] [PubMed]
  7. A. Wax, C.H. Yang, and J.A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 281230–1232 (2003)
    [Crossref] [PubMed]
  8. Yan Zhang and Manabu Sato, “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes,” Opt. Lett. 26, 205–207 (2001)
    [Crossref]
  9. Renu Tripathi, Nader Nassif, J. Stuart Nelson, Boris Hyle Park, and Johannes F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002)
    [Crossref]
  10. E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
    [Crossref]
  11. A. Ceyhun Akcay, Jannick P. Rolland, and Jason M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921–1923 (2003)
    [Crossref] [PubMed]
  12. Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
    [Crossref] [PubMed]
  13. T.F. Coleman and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optimiz. 6, 1040–1058 (1996)
    [Crossref]

2004 (3)

Wolfgang Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004)
[Crossref] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
[Crossref] [PubMed]

2003 (2)

2002 (2)

2001 (2)

Yan Zhang and Manabu Sato, “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes,” Opt. Lett. 26, 205–207 (2001)
[Crossref]

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

1996 (1)

T.F. Coleman and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optimiz. 6, 1040–1058 (1996)
[Crossref]

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Apolonski, A.

Bizheva, K.

Boccara, A.C.

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Boppart, S.

Boppart, Stephen A.

Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
[Crossref] [PubMed]

Bouma, B.

Bouma, Brett E.

Brett E. Bouma and Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)

Brezinski, M.

Ceyhun Akcay, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Chujo, W.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

Coleman, T.F.

T.F. Coleman and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optimiz. 6, 1040–1058 (1996)
[Crossref]

de Boer, Johannes F.

Drexler, W.

Drexler, Wolfgang

Wolfgang Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004)
[Crossref] [PubMed]

Dubois, A.

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Eichenholz, Jason M.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Grieve, K.

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Hee, M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Hermann, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Hyle Park, Boris

Izatt, J.A.

Knight, J. C.

Li, Y.

T.F. Coleman and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optimiz. 6, 1040–1058 (1996)
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Marks, Daniel

Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
[Crossref] [PubMed]

Moneron, G.

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Moore, S. C.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

Nassif, Nader

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Rolland, Jannick P.

Russell, P. St. J.

Sampson, D. D.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

Sato, Manabu

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Scott Carney, P.

Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
[Crossref] [PubMed]

Smith, E.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Stuart Nelson, J.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

Tearney, G.

Tearney, Guillermo J.

Brett E. Bouma and Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)

Tripathi, Renu

Unterhuber, A.

Vetterlein, M.

Wada, N.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

Wadsworth, W. J.

Wax, A.

Yang, C.H.

Zhang, Yan

IEEE Photon. Technol. Lett. (1)

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broadband sources,” IEEE Photon. Technol. Lett. 13, 64–66 (2001)
[Crossref]

J. Biomed. Opt. (2)

Daniel Marks, P. Scott Carney, and Stephen A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281–1287 (2004)
[Crossref] [PubMed]

Wolfgang Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004)
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 491227–1234 (2004)
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science,  254, 1178 (1991).
[Crossref] [PubMed]

SIAM J. Optimiz. (1)

T.F. Coleman and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optimiz. 6, 1040–1058 (1996)
[Crossref]

Other (1)

Brett E. Bouma and Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

PSF optimization algorithm

Fig. 2.
Fig. 2.

Typical light source spectra

Fig. 3.
Fig. 3.

The optimal PSF provides improved OCT resolution for the source spectra shown in Fig. 3. (a) Envelopes of theoretical PSFs (b) Envelopes of experimentally measured PSFs. PSFs in the insets are normalized to conserve the L2 norm.

Fig. 4.
Fig. 4.

Schematic of a spectral domain OCT system: BS, beam splitter; NDF, neutral density filter; PCG, phase compensation glass; RM, reference mirror

Fig. 5.
Fig. 5.

OCT images of an onion root tip tissue (a) Image obtained with the originally detected xenon spectrum. (b) Image obtained with the optimal spectrum. (c) Intensity cross section from the image shown in panel (a) at lateral position 80 µm. (d) Intensity cross section from the image shown in panel (b) at lateral position 80 µm.

Tables (1)

Tables Icon

Table 1. Optimal PSF has improved FWHM and RMSW compared to other PSF given by white light, Gaussian, and Hamming windowed spectra

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( k , r ) = P ( k ) Q ( k ) R 1 2 ( k ) exp [ 2 i k ( z 0 + r ) ] + S 1 2 ( k ) 0 a ( z ) exp [ 2 i k ( z 0 + n z ) ] d z 2
= P ( k ) Q ( k ) { R ( k ) + S ( k ) B + [ R ( k ) S ( k ) B ] 1 2 I d ( k , r ) }
I d ( k , r ) = [ I ( k , r ) PQR PQSB ] [ ( PQR ) × ( PQSB ) ] 1 2 .
I d ( r ) = k 1 k 2 V ( k ) I d ( k , r ) d k = 2 0 a ( z ) PSF ( Z ) d z B 1 2
PSF ( Z ) PSF ( r n z ) k 1 k 2 V ( k ) cos 2 k ( r n z ) d k
PSF ( Z ) = 0 V ( k ) rect ( k 1 , k 2 ) cos 2 k Z d k = [ 0 V ( k ) cos 2 k Z d k ] U ( Z )
( f 1 f 2 f M ) = [ g 11 g 12 G 1 W g 21 g 21 g 2 W g M 1 g M 2 g M W ] ( v 1 v 2 v W ) or F = G V ,

Metrics