Abstract

We describe the application of wide-field frequency domain Fluorescence Lifetime Imaging Microscopy (FLIM) to imaging in microfluidic devices. FLIM is performed using low cost, intensity modulated Light Emitting Diodes (LEDs) for illumination. The use of lifetime imaging for quantitative analysis within such devices is demonstrated by mapping the molecular diffusion of iodide ions across a microchannel.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
    [Crossref] [PubMed]
  2. S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
    [Crossref]
  3. T. Chovan and A. Guttman, “Microfabricated devices in biotechnology and biochemical processing,” Trends Biotechnol. 20, 116–122 (2002).
    [Crossref] [PubMed]
  4. A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
    [Crossref]
  5. E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
    [Crossref] [PubMed]
  6. Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
    [Crossref] [PubMed]
  7. T. Vo-Dinh and B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540–551 (2000).
    [Crossref]
  8. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
    [Crossref]
  9. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
    [Crossref]
  10. R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
    [Crossref]
  11. C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
    [Crossref]
  12. R.K.P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M.A.A. Neil, A.J. deMello, and P.M.W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
    [Crossref] [PubMed]
  13. S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
    [Crossref]
  14. J. R. Lakowicz and K. W. Berndt, “Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
    [Crossref]
  15. G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
    [Crossref] [PubMed]
  16. Q. S. Hanley and A. H. A. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microscopy 218, 62–67 (2005).
    [Crossref]
  17. D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).
  18. M. D. Levenson, “Extending optical lithography to the gigabit era,” Solid State Technol. 38, 57–66 (1995).
  19. L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
    [Crossref]
  20. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
    [Crossref]
  21. LK van Geest and KWJ Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Peptide Sci. 10, 501–510 (2003).
    [Crossref]
  22. Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
    [Crossref]
  23. J.M. Harris and F.E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1470–1476 (1977).
    [Crossref]
  24. Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
    [Crossref] [PubMed]
  25. A. Squire and P.I.H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Mircoscopy 193, 36–49 (1999).
    [Crossref]
  26. M.J. Cole, J. Siegel, S.E.D. Webb, R. Jones, K. Dowling, P.M.W. French, M.J. Lever, L.O.D. Sucharov, M.A.A. Neil, R. Juskaitis, and T. Wilson, “Whole-field optically sectioned fluorescence lifetime imaging,” Opt. Lett. 25, 1361–1363 (2000).
    [Crossref]
  27. A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
    [Crossref]
  28. A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
    [Crossref]

2005 (3)

S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
[Crossref]

Q. S. Hanley and A. H. A. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microscopy 218, 62–67 (2005).
[Crossref]

R.K.P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M.A.A. Neil, A.J. deMello, and P.M.W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[Crossref] [PubMed]

2004 (1)

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

2003 (2)

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

LK van Geest and KWJ Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Peptide Sci. 10, 501–510 (2003).
[Crossref]

2002 (5)

A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
[Crossref]

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[Crossref] [PubMed]

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
[Crossref] [PubMed]

T. Chovan and A. Guttman, “Microfabricated devices in biotechnology and biochemical processing,” Trends Biotechnol. 20, 116–122 (2002).
[Crossref] [PubMed]

2001 (2)

A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
[Crossref]

Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
[Crossref] [PubMed]

2000 (5)

M.J. Cole, J. Siegel, S.E.D. Webb, R. Jones, K. Dowling, P.M.W. French, M.J. Lever, L.O.D. Sucharov, M.A.A. Neil, R. Juskaitis, and T. Wilson, “Whole-field optically sectioned fluorescence lifetime imaging,” Opt. Lett. 25, 1361–1363 (2000).
[Crossref]

S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[Crossref]

T. Vo-Dinh and B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540–551 (2000).
[Crossref]

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

1999 (1)

A. Squire and P.I.H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Mircoscopy 193, 36–49 (1999).
[Crossref]

1996 (1)

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

1995 (1)

M. D. Levenson, “Extending optical lithography to the gigabit era,” Solid State Technol. 38, 57–66 (1995).

1994 (2)

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
[Crossref]

1991 (3)

J. R. Lakowicz and K. W. Berndt, “Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[Crossref]

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

1977 (1)

J.M. Harris and F.E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1470–1476 (1977).
[Crossref]

Adrian, R.J.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Aref, H.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Arndt-Jovin, D. J.

Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
[Crossref] [PubMed]

Arndt-Jovin, D.J.

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

Bastiaens, P.I.H.

A. Squire and P.I.H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Mircoscopy 193, 36–49 (1999).
[Crossref]

Beebe, D.J.

D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
[Crossref] [PubMed]

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Bell, J.L.

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

Benninger, R.K.P.

Berndt, K. W.

J. R. Lakowicz and K. W. Berndt, “Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[Crossref]

Besselink, G.A.J.

A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
[Crossref]

Boppart, S.A

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Chovan, T.

T. Chovan and A. Guttman, “Microfabricated devices in biotechnology and biochemical processing,” Trends Biotechnol. 20, 116–122 (2002).
[Crossref] [PubMed]

Clayton, A. H. A.

Q. S. Hanley and A. H. A. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microscopy 218, 62–67 (2005).
[Crossref]

Clegg, R.M.

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

Clegg, Robert M.

Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
[Crossref]

Cole, M.J.

Cullum, B.

T. Vo-Dinh and B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540–551 (2000).
[Crossref]

Dai, X.

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

de Mello, A.J.

S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[Crossref]

deMello, A.J.

Dowling, K.

Elder, A.

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

Frank, J.

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

French, P.M.W.

Gadella, W J

Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
[Crossref]

Geppert, L.

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

Graham, E.M.

S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
[Crossref]

Guttman, A.

T. Chovan and A. Guttman, “Microfabricated devices in biotechnology and biochemical processing,” Trends Biotechnol. 20, 116–122 (2002).
[Crossref] [PubMed]

Hanley, Q. S.

Q. S. Hanley and A. H. A. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microscopy 218, 62–67 (2005).
[Crossref]

Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
[Crossref] [PubMed]

Harris, J.M.

J.M. Harris and F.E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1470–1476 (1977).
[Crossref]

Hishida, K.

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Hofmann, O.

Huang, Y.

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

Irisawa, G.

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Ishizuka, M.

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Ismagilov, R.F.

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Jakeway, S.C.

S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[Crossref]

Jeong, D. A.

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Jones, A.C.

S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
[Crossref]

Jones, R.

Jovin, T.M.

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

Jovin Theodorus, Thomas M.

Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
[Crossref]

Juskaitis, R.

Kaminski, C.F.

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

Kenis, P.J.A.

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz and K. W. Berndt, “Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[Crossref]

Levenson, M. D.

M. D. Levenson, “Extending optical lithography to the gigabit era,” Solid State Technol. 38, 57–66 (1995).

Lever, M.J.

Liu, R.H.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Lytle, F.E.

J.M. Harris and F.E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1470–1476 (1977).
[Crossref]

Madou, M.

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

Maeda, M.

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Magennis, S.W.

S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
[Crossref]

Markle, G.

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Marks, D.L.

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Marriott, G.

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

Mather, E.L.

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

McGinty, J.

Mensing, G.A.

D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
[Crossref] [PubMed]

Mitchell, A. C.

A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
[Crossref]

Munro, I.

Murray, J. G.

A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
[Crossref]

Neil, M.A.A.

Okazaki, S.

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

Olsen, M.G.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Owen, F.

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Parikh, D.S.

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Pease, A.

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Raskin, L.

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Requejo-Isidro, J.

Russell, E.L.

S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[Crossref]

Santiago, J.G.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Sato, Y.

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Schasfoort, R.B.M.

A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
[Crossref]

Sharp, K.V.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Siegel, J.

Squire, A.

A. Squire and P.I.H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Mircoscopy 193, 36–49 (1999).
[Crossref]

Stone, H.A.

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Stoop, KWJ

LK van Geest and KWJ Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Peptide Sci. 10, 501–510 (2003).
[Crossref]

Stremler, M.A.

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

Stroock, A.D.

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Subramaniam, V.

Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
[Crossref] [PubMed]

Sucharov, L.O.D.

Swartling, J.

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

Tüdos, A.J.

A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
[Crossref]

van Geest, LK

LK van Geest and KWJ Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Peptide Sci. 10, 501–510 (2003).
[Crossref]

Verpoorte, E.

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[Crossref] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh and B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540–551 (2000).
[Crossref]

Von Bünau Grenville, R.

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

Walker, G.M.

D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
[Crossref] [PubMed]

Wall, J. E.

A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
[Crossref]

Webb, S.E.D.

Whitesides, G.

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Wilson, T.

Xi, C.

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Huang, E.L. Mather, J.L. Bell, and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Anal. Bioanal. Chem. 372, 49–65 (2002).
[Crossref] [PubMed]

Angewandte Chemie International Edition (1)

S.W. Magennis, E.M. Graham, and A.C. Jones, “Quantitative Spatial Mapping of Mixing in Microfluidic Systems,” Angewandte Chemie International Edition 44, 6512–6516 (2005).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

D.J. Beebe, G.A. Mensing, and G.M. Walker, “Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl. Phys. Lett. 76, 2376–2378 (2000).
[Crossref]

Bioimaging (1)

Robert M. Clegg, Thomas M. Jovin Theodorus, and W J Gadella, “Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data,” Bioimaging 2, 139–159 (1994).
[Crossref]

Biophys. J. (1)

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[Crossref] [PubMed]

Cytometry (1)

Q. S. Hanley, V. Subramaniam, and D. J. Arndt-Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43, 248–260 (2001).
[Crossref] [PubMed]

Electrophoresis (1)

E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002).
[Crossref] [PubMed]

Fresenius J. Anal. Chem. (2)

S.C. Jakeway, A.J. de Mello, and E.L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[Crossref]

T. Vo-Dinh and B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540–551 (2000).
[Crossref]

IEEE Spectrum (1)

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

J. Microelectromech. Syst. (1)

R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst. 9, 190–197 (2000).
[Crossref]

J. Microsc. Oxf. (1)

A. C. Mitchell, J. E. Wall, and J. G. Murray, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. Oxf. 206, 225–232 (2002).
[Crossref]

J. Microscopy (1)

Q. S. Hanley and A. H. A. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microscopy 218, 62–67 (2005).
[Crossref]

J. Mircoscopy (1)

A. Squire and P.I.H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Mircoscopy 193, 36–49 (1999).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

Lab. Chip (1)

A.J. Tüdős, G.A.J. Besselink, and R.B.M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab. Chip 1, 83–96 (2001).
[Crossref]

Lett. Peptide Sci. (1)

LK van Geest and KWJ Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Peptide Sci. 10, 501–510 (2003).
[Crossref]

Meas. Sci. Technol. (1)

Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of convective mixing in microchannel by fluorescence imaging,” Meas. Sci. Technol. 14, 114–122 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

P. Natl. Acad. Sci. USA (1)

C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” P. Natl. Acad. Sci. USA 101, 7516–7521 (2004).
[Crossref]

Rev. Sci. Instrum. (2)

J. R. Lakowicz and K. W. Berndt, “Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[Crossref]

J.M. Harris and F.E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1470–1476 (1977).
[Crossref]

Solid State Technol. (2)

D. A. Jeong, G. Markle, F. Owen, A. Pease, and R. Von Bünau Grenville, “The future of optical lithography,” Solid State Technol. 37, 39–47 (1994).

M. D. Levenson, “Extending optical lithography to the gigabit era,” Solid State Technol. 38, 57–66 (1995).

Trends Biotechnol. (1)

T. Chovan and A. Guttman, “Microfabricated devices in biotechnology and biochemical processing,” Trends Biotechnol. 20, 116–122 (2002).
[Crossref] [PubMed]

Other (1)

A. Elder, J. Frank, J. Swartling, X. Dai, and C.F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microscopy2006 (accepted for publication).
[Crossref]

Supplementary Material (1)

» Media 1: AVI (4783 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Design of the dual-inlet stamp used to create PDMS microchannel structure.

Fig. 2.
Fig. 2.

Microfabrication of dual inlet channel using photolithography and soft lithography.

Fig. 3.
Fig. 3.

Confocal 3D image of two parallel aqueous streams flowing down a microchannel, just after the inlets. Only the left flow contained fluorescent dye. The signals seen on the right define the channel wall and stem from residual dye attached to the wall from previous experiments. The loss of fluorescence intensity in the upper part of the channel is due to reabsorption and optical distortion near the walls. The wider profile of the upper part of the fluorescent stream is due to small imperfections in the geometry of the microchannel and its inlets.

Fig. 4.
Fig. 4.

Calibration plot to determine the Stern-Vollmer quenching parameters for Rhodamine 6G solutions with KI. Each solution contains a different concentration of KI, but the same ionic strength through addition of KCl. From the gradient and intercept the bimolecular reaction rate constant, kq, is found to be 6.64×109 dm3 mole-1 s-1.

Fig. 5.
Fig. 5.

Lifetime images taken at increasing distances along the length of the channel. The increasing degree of mixing with increasing distance is clearly seen. [Media 1]

Fig. 6.
Fig. 6.

(a) Plot of lifetime profiles perpendicular to the flow direction for 5 different distances down the channel. Initially one sees a sharper gradient, which gradually becomes less distinct. (b) Concentration profiles derived from the lifetime data according to Equation 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ m = 1 2 π f 1 m 2 1
τ ϕ = tan ϕ 2 π f
τ ϕ = 1 2 π f tan ( ( ϕ ϕ ref ) + tan 1 ( 2 π f τ ref ) )
τ m = 1 2 π f ( m ref 2 m 2 ( 1 + ( 2 π f ) 2 τ ref 2 ) 1 ) 1 2
1 τ = d q [ Q ] + 1 τ 0

Metrics