Abstract

Polarization memory is a well established phenomenon occurring when circularly polarized light propagates in turbid media of larger particles. Recent studies have demonstrated that the circularly cross-polarized imaging can significantly improve subsurface reflection contrast due to the polarization memory effect. We have found that such improvement is strongly influenced by the optical properties of the media. Circularly cross-polarized light provides superior image enhancement in low scattering media, but becomes inferior in high scattering media. Our experiments also demonstrate that polarization imaging provides no significant improvement to image resolution.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
    [CrossRef] [PubMed]
  2. G. D. Lewis, D. L. Jordan, and P. J. Roberts, "Backscattering target detection in a turbid medium by polarization discrimination," Appl. Opt. 38, 3937-3944 (1999).
    [CrossRef]
  3. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt. Express 7,23-28 (2000).
    [CrossRef] [PubMed]
  4. S. Morgan and I. Stockford, "Surface-reflection elimination in polarization imaging of superficial tissue," Opt. Lett. 28, 114-116 (2003).
    [CrossRef] [PubMed]
  5. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, "Target detection in optically scattered media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996).
    [CrossRef] [PubMed]
  6. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light", Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  7. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, "Visibility depth improvement in active polarization imaging in scattering media," Appl. Opt. 39, 4933-4941 (2000).
    [CrossRef]
  8. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, "Improving visibility depth in passive underwater imaging by use of polarization," Appl. Opt. 42, 2794-2803 (2003).
    [CrossRef] [PubMed]
  9. G. Yao and L.-H. Wang, "Propagation of polarized light in turbid media: an animated-simulation study," Opt. Express 7, 198-203 (2000).
    [CrossRef] [PubMed]
  10. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
    [CrossRef]
  11. A. D. Kim and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett. 27, 1589-1591 (2002).
    [CrossRef]
  12. X. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
    [CrossRef] [PubMed]
  13. S. A. Kartazayeva, X. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005).
    [CrossRef] [PubMed]
  14. R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005).
    [CrossRef] [PubMed]
  15. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
    [CrossRef]
  16. G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Comm. 241, 255-261 (2004).
    [CrossRef]
  17. R. Nothdurft and G. Yao, "Effects of turbid media optical properties on object visibility in subsurface polarization imaging," Appl. Opt.In press (2006).
    [CrossRef] [PubMed]
  18. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-453 (1997).
    [CrossRef] [PubMed]

2006

R. Nothdurft and G. Yao, "Effects of turbid media optical properties on object visibility in subsurface polarization imaging," Appl. Opt.In press (2006).
[CrossRef] [PubMed]

2005

2004

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Comm. 241, 255-261 (2004).
[CrossRef]

X. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
[CrossRef] [PubMed]

2003

2002

2000

1999

1997

1996

1989

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Alfano, R. R.

Bigio, I. J.

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Chang, P. C. Y.

Demos, S. G.

Eick, A. A.

Engheta, N.

Flitton, J. C.

Freyer, J. P.

Hielscher, A. H.

Hopcraft, K. I.

Hu, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light", Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Jakeman, E.

Jordan, D. L.

Kartazayeva, S. A.

Kim, A. D.

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light", Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Lewis, G. D.

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Morgan, S.

Moscoso, M.

Mourant, J. R.

Ni, X.

Nothdurft, R.

R. Nothdurft and G. Yao, "Effects of turbid media optical properties on object visibility in subsurface polarization imaging," Appl. Opt.In press (2006).
[CrossRef] [PubMed]

R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005).
[CrossRef] [PubMed]

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Pugh, E. N.

Radousky, H. B.

Roberts, P. J.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light", Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Rowe, M. P.

Shen, D.

Stockford, I.

Tyo, J. S.

Walker, J. G.

Wang, L.-H.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Yao, G.

R. Nothdurft and G. Yao, "Effects of turbid media optical properties on object visibility in subsurface polarization imaging," Appl. Opt.In press (2006).
[CrossRef] [PubMed]

R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005).
[CrossRef] [PubMed]

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Comm. 241, 255-261 (2004).
[CrossRef]

G. Yao and L.-H. Wang, "Propagation of polarized light in turbid media: an animated-simulation study," Opt. Express 7, 198-203 (2000).
[CrossRef] [PubMed]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Appl. Opt.

Lasers Surg. Med.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light", Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Opt. Comm.

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Comm. 241, 255-261 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Phys. Rev. B

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phys. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. The target is a small square shaped reflective object submerged in a semi-infinite scattering medium.

Fig. 2.
Fig. 2.

Unpolarized images of various phantoms used in the study. Rows from top to bottom represent phantoms of 0.989, 0.535, 0.356µm microspheres. Columns from left to right represent phantoms of (1) µs=50, µa=0.1 (2) µs=3.75, µa=0.1 (3) µs=15, µa=0.1 (4) µs=15, µa=0.4. All units are in cm-1. Targets are located at 0.8 mm below surface.

Fig. 3.
Fig. 3.

Image visibility of phantoms with µs=3.75 cm-1 and µa=0.1 cm-1. “CO” indicates co-polarized image, and “CR” refers to cross-polarized image.

Fig. 4.
Fig. 4.

Image resolution of phantoms with µs=3.75 cm-1 and µa=0.1 cm-1.

Fig. 5.
Fig. 5.

Image visibility of phantoms with µs=15.0 cm-1 and µa=0.1 cm-1.

Fig. 6.
Fig. 6.

Image visibility of phantoms with µs=15.0 cm-1 and µa=0.4 cm-1.

Metrics