Abstract

We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting in a nonlinear optical fiber. Spectra of CH stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when spectroscopy is performed in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).
  2. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).
  3. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [CrossRef]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [CrossRef]
  5. J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004).
    [CrossRef]
  6. F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
    [CrossRef]
  7. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
    [CrossRef]
  8. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36, 2387–2389 (2011).
    [CrossRef]
  9. R. Hui and C. Johnson, “Laser system for photonic excitation investigation,” U.S. patent 7,525,724 (April28, 2009).
  10. P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
    [CrossRef]
  11. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
    [CrossRef]
  12. J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
    [CrossRef]
  13. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt Lett. 11, 662–664 (1986).
  14. P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
    [CrossRef]
  15. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
    [CrossRef]
  16. A. F. Pegorarol, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009).
    [CrossRef]
  17. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
    [CrossRef]
  18. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
    [CrossRef]
  19. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
    [CrossRef]
  20. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17, 20700–20706 (2009).
    [CrossRef]
  21. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
    [CrossRef]
  22. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012).
    [CrossRef]
  23. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37, 1652–1654 (2012).
    [CrossRef]
  24. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
    [CrossRef]
  25. M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
    [CrossRef]
  26. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
    [CrossRef]
  27. K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
    [CrossRef]

2012 (4)

2011 (2)

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36, 2387–2389 (2011).
[CrossRef]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

2009 (5)

2008 (2)

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

2007 (3)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
[CrossRef]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
[CrossRef]

2006 (3)

F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
[CrossRef]

J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
[CrossRef]

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

2004 (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

2002 (1)

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

1986 (1)

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt Lett. 11, 662–664 (1986).

Aamer, K. A.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
[CrossRef]

Abreu-Afonso, J.

Adany, P.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

Andresen, E. R.

Arnett, D. C.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

Baumgartl, M.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Berto, P.

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Chemnitz, M.

Chen, J.-X.

J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

Cheng, J. X.

Cicerone, M. T.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
[CrossRef]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
[CrossRef]

Dake, F.

Dietzek, B.

Díez, A.

Dong, L.

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Evans, C. L.

Fermann, M. E.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Fu, D.

Fu, L.

Fukui, K.

Gagliano, R.

Ganikhanov, F.

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Gordon, J. P.

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt Lett. 11, 662–664 (1986).

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

Gottschall, T.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Herda, R.

Holtom, G. R.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37, 1652–1654 (2012).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Hui, R.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
[CrossRef]

R. Hui and C. Johnson, “Laser system for photonic excitation investigation,” U.S. patent 7,525,724 (April28, 2009).

Itoh, K.

Jauregui, C.

Jia, Y.

Johnson, C.

R. Hui and C. Johnson, “Laser system for photonic excitation investigation,” U.S. patent 7,525,724 (April28, 2009).

Johnson, C. K.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
[CrossRef]

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Kano, S. S.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Keiding, S. R.

Knutsen, K. P.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

Kong, L.

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Lee, Y. J.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
[CrossRef]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
[CrossRef]

Lefrancois, S.

Legare, F.

Levenson, M. D.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Li, P.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
[CrossRef]

Limpert, J.

Liu, Y.

Liu, Z.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Messer, B. M.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

Meyer, T.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Moffatt, D. J.

Nielsen, C. K.

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

Onorato, R. M.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

Ozeki, Y.

Pegoraro, A. F.

Pegorarol, A. F.

Pezacki, J. P.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Popp, J.

Price, E. S.

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
[CrossRef]

Ridsdale, A.

Rigneault, H.

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Rothhardt, M.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Saykally, R. J.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

Schneider, P.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).

Shi, K.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
[CrossRef]

Stehno-Bittel, L.

Stolow, A.

Thøgersen, J.

Thomas, B. K.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Tünnermann, A.

Unruh, J. R.

Vartiainen, E.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
[CrossRef]

Volkmer, A.

Wadsworth, W. J.

Wise, F. W.

Xie, X. S.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37, 1652–1654 (2012).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
[CrossRef]

J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

Zach, A.

Zhang, R.

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011).
[CrossRef]

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006).
[CrossRef]

J. Raman Spectrosc. (1)

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012).
[CrossRef]

Opt Lett. (1)

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt Lett. 11, 662–664 (1986).

Opt. Express (8)

F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
[CrossRef]

J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
[CrossRef]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
[CrossRef]

A. F. Pegorarol, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
[CrossRef]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17, 20700–20706 (2009).
[CrossRef]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012).
[CrossRef]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009).
[CrossRef]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Other (3)

R. Hui and C. Johnson, “Laser system for photonic excitation investigation,” U.S. patent 7,525,724 (April28, 2009).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Contour plot of calculated SRS spectral resolution (indicated by the value near each curve) as a function of chirped pump and Stokes pulse temporal widths. The unchirped pump and Stokes pulses are both transform-limited with 0.1 ps width.

Fig. 2.
Fig. 2.

Contour plots of calculated CRS signal reduction in decibels (marked by the value near each curve) based on Eq. (22) for CARS (a) and Eq. (23) for SRG (b), as a function of the chirped pump and Stokes pulse temporal widths. The unchirped pump and Stokes pulses were both transform-limited with 0.1 ps width. Dashed straight lines indicate equally chirped pump and Stokes pulses.

Fig. 3.
Fig. 3.

Contour plot of (a) and (c) CARS, and (b) and (d) SRG signal reduction in decibels (marked by the value near each curve) as a function of the chirped pump and Stokes pulse temporal widths. The unchirped pump and Stokes pulses are both transform-limited with 0.1 ps width. (a) and (b) are for Raman resonance linewidth of 9cm1, and (c) and (d) are for a 45cm1 linewidth.

Fig. 4.
Fig. 4.

Calculated relative signal reduction as the function of chirped pulsewidth (identical for the pump and the Stokes) for different spectral widths of the Raman spectral line (9, 45, 90, and 450cm1), (a) for CARS and (b) for SRS.

Fig. 5.
Fig. 5.

Measured (open circles) spontaneous Raman spectrum and numerical fitting (solid curve) with the imaginary part of Eq. (1). The dashed curve represents |χ1111(3)|2 deduced from the spontaneous Raman spectrum and with nonresonant background added.

Fig. 6.
Fig. 6.

Experimental configuration with controllable Stokes wavelength (λS) and pump relative delay (δt). BS, beam splitter; SM, silver mirror; PCF, photonic crystal fiber; LP, long-pass filter; BP, bandpass filter; SF6, SF-6 glass rod; DC, dichroic beam combiner; OB, objective lenses; PC, Pockels cell; Pol, polarizer; PD, photodiode. Inset, illustration of time–wavelength diagram of pump and Stokes waves.

Fig. 7.
Fig. 7.

(a) Measured Stokes spectra with wavelength shifted by SSFS. The curves are shifted by 0.5 between one and the others for better display. The vertical dashed line indicates the original laser wavelength before shifting. (b) Calculated relative delay of the Stokes pulse as the function of wavelength (relative to the delay at 900 nm). Short sections marked with bold-lines indicate slopes used in the measurements shown in Figs. 911.

Fig. 8.
Fig. 8.

(a) Measured and (b) calculated CARS as a function of pulse delay and the Stokes wavelength. (c) Measured (dots) and calculated (continuous line) CARS spectrum. No chirp was applied for pump and Stokes pulses.

Fig. 9.
Fig. 9.

(a) Measured and (b) calculated SRG signal as a function of pulse delay and the Stokes wavelength. (c) Measured (asterisks) and calculated (continuous line) SRG spectrum. (d) Measured and (e) calculated CARS signal as a function of pulse delay and the Stokes wavelength. (f) Measured (asterisks) and calculated (continuous line) CARS spectrum. Pump and Stokes pulses were chirped to 425 and 635 fs, respectively. Dashed lines in (a), (b), (d), and (e) indicate differential pulse delay.

Fig. 10.
Fig. 10.

(a) Measured and (b) calculated SRG as a function of pump pulse delay and the Stokes wavelength. (c) Measured (asterisks) and calculated (continuous line) SRG spectrum. (d) Measured and (e) calculated CARS signal as the function of pulse delay and the Stokes wavelength. (f)  Measured (stars) and calculated (continuous line) CARS spectrum. Pump and Stokes pulses were chirped to 855 and 1055 fs, respectively. The dashed lines in (a), (b), (d), and (e) indicate differential pulse delay.

Fig. 11.
Fig. 11.

Simulated spectra. (a) and (b) SRG. (c) and (d) CARS evaluated by the integrated anti-Stokes power. (e) and (f) CARS evaluated by the anti-Stokes peak spectral density. The horizontal axis is the pump-Stokes frequency separation. (a), (c) and (e) Fixed Stokes pulsewidth at 500 fs but varying pump pulsewidths of 500, 700, and 900 fs. (b), (d), and (f) fixed pump pulsewidth at 500 fs but varying Stokes pulsewidths of 500, 700, and 900 fs.

Fig. 12.
Fig. 12.

Anti-Stokes spectral density calculated as a function of wavelength (vertical axis) and pump-Stokes frequency separation (horizontal axis), (a) with 500 fs Stokes pulsewidth and 900 fs pump pulsewidth, and (b) with 900 fs Stokes pulsewidth and 500 fs pump pulsewidth.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

χ(3)(ω)=mAmΩmωiΓm/2+χnr(3),
R˜sp(ω)=FT[E˜p(t)·E˜s*(t)]·L(ω),
L(ω)=mBmΩmωjΓm/2
E˜AS(ω)=FT[R˜sp(t)·E˜p(t)],
IC(ω)=η(ω)|E˜AS(ω)|2|χ1111(3)|2·|Ap|4|As|2,
R˜sp(ω)=FT[E˜p(t)·E˜s*(t)]·jL(ω).
E˜SRG(ω)=FT[R˜sp(t)·E˜p*(t)].
I(t)=ηω|E˜s(t)+E˜SRS(t)|2,
iSRS(t)=2ηωE˜sRe[E˜SRS(t)]Im[χ1111(3)]·|Ap|2|As|2.
E˜p(t)=Ap0[Δp2π(ln2)(1+Cp2)]1/4exp[(1+jCp)2ln2t2Δp2π21+Cp2]exp(jωpt),
E˜s(t)=As0[Δs2π(ln2)(1+Cs2)]1/4exp[(1+jCs)2ln2t2Δs2π21+Cs2]exp(jωst),
Cp=(Tpc2/Tp02)1,
Cs=(Tsc2/Ts02)1,
E˜p(t)E˜s*(t)=Em0exp{t2π22ln2[(Δp21+Cp2+Δs21+Cs2)+j(CpΔp21+Cp2CsΔs21+Cs2)]}exp[j(ωpωs)t]=Ep0Es0exp[(1+jCeff)2ln2t2π2Δeff21+Ceff2]exp[j(ωpωs)t],
Ceff=CpΔp2(1+Cs2)CsΔs2(1+Cp2)Δp2(1+Cs2)+Δs2(1+Cp2)
Em0=Ap0As0πΔpΔsln2(1(1+Cp2)(1+Cs2))1/4
Δeff=(Δp21+Cp2+Δs21+Cs2)(1+Ceff2)
E˜p2(t)E˜s*(t)=E0Cexp[t2π2Δeff22ln2(1+Ceff2)(1+jCeff)]exp[j(2ωpωs)t],
E0C=Ap02As0[Δp2π(ln2)(1+Cp2)]1/2[Δs2π(ln2)(1+Cs2)]1/4
Ceff=2CpΔp2(1+Cs2)CsΔs2(1+Cp2)2Δp2(1+Cs2)+Δs2(1+Cp2)
Δeff=(2Δp21+Cp2+Δs21+Cs2)(1+Ceff2)
PCARS=E0c24πln21+Ceff2Δeff2.
ASRS=Ap02As02πln2Δp2Δs2Δp2(1+Cs2)+Δs2(1+Cp2).

Metrics