Abstract

We report the enhancement of the blue upconversion emission in a Tm3+-Yb3+ codoped fluoroindate glass covered with silica microspheres. Each microsphere produces a photonic nanojet that concentrates the illuminating beam in a tiny region of the glass, increasing the intensity per unit area and so the upconversion emission by a factor of 3. Moreover, the mean size of the emission area has been reduced by a factor of 3 due to the three-photon process involved in the blue emission band. The experimental values of the full width at half-maximum of the emission spots have been found to be in agreement with the theoretical values obtained from finite-difference time-domain simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
  2. T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
    [CrossRef]
  3. C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
    [CrossRef]
  4. L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
    [CrossRef]
  5. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
    [CrossRef]
  6. S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
    [CrossRef]
  7. L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
    [CrossRef]
  8. A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
    [CrossRef]
  9. I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
    [CrossRef]
  10. N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
    [CrossRef]
  11. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
    [CrossRef]
  12. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
    [CrossRef]
  13. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
    [CrossRef]
  14. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009).
    [CrossRef]
  15. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [CrossRef]
  16. I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
    [CrossRef]
  17. J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
    [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1998).

2012

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

2010

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

2009

2008

2007

2003

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[CrossRef]

2002

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

1999

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

1997

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

1990

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

Aegerter, M. A.

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

Aigouy, L.

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[CrossRef]

Aouani, H.

Austin, R. H.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Bonod, N.

Cánovas, E.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Cassanjes, F. C.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Crégut, O.

Dalland, J.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

de, L.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

de Araujo, C. B.

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

De Wilde, Y.

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[CrossRef]

del Cañizo, C.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Devilez, A.

Ferrand, P.

Friend, C. S.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

Gachet, D.

García-Solé, J.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

Gérard, D.

Gomes, A. S. L.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Haacke, S.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1998).

Hebert, T.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

Hirlimann, C.

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Kapoor, R.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

Lahoz, F.

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

Lavín, V.

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

Lecler, S.

Lecong, N.

Leitão, J. P.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Lenth, W.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

Li, F.

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

Lim, S. F.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Lozano-Gorrín, A. D.

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

Luque, A.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Macfarlane, R. M.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

Maciel, G. S.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

Martin, I. R.

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

Martín, I. R.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

Méndez-Ramos, J.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

Menezes, S.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Messaddeq, Y.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

Mortier, M.

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[CrossRef]

Pan, A. C.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Patra, A.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

Pianta, M.

Poirier, G.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Popov, E.

Prasad, P. N.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

Rakov, N.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Rehspringer, J.-L.

Ribeiro, S. J. L.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Riehn, R.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Rigneault, H.

Rodríguez, V. D.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

Rodríguez-Mendoza, U. R.

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

Romero, J. J.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

Ryu, W. S.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Santos, N. M.

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Soria, A. B.

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

Stout, B.

Sun, L.

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

Sundheimer, M. L.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1998).

Tung, C.-K.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Wannemacher, R.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

Wenger, J.

Xiong, L.

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

Xu, C.

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

Yan, C.

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

Yang, T.

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

Yang, Y.

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

Zhang, C.

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

Zhang, Y.

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

Zhuo, R.

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Appl. Phys. Lett.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990).
[CrossRef]

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[CrossRef]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003).
[CrossRef]

Biomaterials

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[CrossRef]

J. Appl. Phys.

N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Rare Earths

C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010).
[CrossRef]

Mol. Phys.

J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003).
[CrossRef]

Nanoscale

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Nanotechnology

S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009).
[CrossRef]

Opt. Express

Opt. Mater.

I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003).
[CrossRef]

Phys. Rev. B

G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).

Sol. Energy Mater. Solar Cells

A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010).
[CrossRef]

Spectrochim. Acta A

I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. DL, diode laser at 950 nm; BS, beam splitter; M, mirror; MO, microscope objective; XYZ, translation stage; S, sample; L, lens; F, filter.

Fig. 2.
Fig. 2.

(a) Upconversion emission spectrum obtained in a fluoroindate glass codoped with 0.75 mol. % of Tm3+ and 2.25 mol. % of Yb3+ under excitation at 950 nm. (b) Partial energy level diagram of Tm3+ and Yb3+ ions showing the upconversion mechanism.

Fig. 3.
Fig. 3.

(a) Image of the blue emission from the focal spot of three microspheres located on a Tm–Yb codoped glass. (b) 3D graph showing the spatial intensity distribution.

Fig. 4.
Fig. 4.

Dependence of the upconversion intensity at 480 nm on the pump power at 950 nm obtained through the microsphere (squares) and from the bare glass (triangles). The solid lines correspond to the fits to Eq. (1) in logarithmic scale.

Fig. 5.
Fig. 5.

FDTD simulation of the intensity distribution of a 3.8 μm diameter sphere.

Fig. 6.
Fig. 6.

Plotted curves correspond from inside to outside to one-photon, two-photon, three-, and four-photon power densities and 226, 261, 320, and 453 nm FWHM, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IUPIIRn,
WRAW2=(WUPC*β)2+WPSF2,

Metrics