Abstract

Quenching effects, including graphite-shell quenching and impurity quenching, on negatively charged nitrogen-vacancy (N-V) centers in fluorescent nanodiamonds (FNDs) can reduce the fluorescence quantum yield and bring about multiexponential decay fluorescence to FNDs. This causes the number of (N-V) centers to be underestimated when using the photon correlation method, which presumes identical emitters. This study proposes a method that combines time-resolved spectroscopy and photon correlation spectroscopy to modify the number measurement with the photon correlation method. The average number of (N-V) centers in 35 nm FNDs was corrected from 7.6 with the unmodified method to 11.96 with the modified method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
    [CrossRef]
  2. K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
    [CrossRef]
  3. P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
    [CrossRef]
  4. S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
    [CrossRef]
  5. Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
    [CrossRef]
  6. R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond Relat. Mater. 12, 583–589 (2003).
    [CrossRef]
  7. S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
    [CrossRef]
  8. L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004).
    [CrossRef]
  9. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
    [CrossRef]
  10. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
    [CrossRef]
  11. G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976).
    [CrossRef]
  12. V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009).
    [CrossRef]
  13. Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009).
    [CrossRef]
  14. X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
    [CrossRef]
  15. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
    [CrossRef]
  16. B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
    [CrossRef]
  17. A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
    [CrossRef]
  18. A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
    [CrossRef]
  19. J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
    [CrossRef]
  20. G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
    [CrossRef]
  21. Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
    [CrossRef]

2011 (1)

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

2010 (1)

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
[CrossRef]

2009 (6)

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009).
[CrossRef]

Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009).
[CrossRef]

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

2007 (1)

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

2006 (1)

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

2005 (1)

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

2004 (1)

L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004).
[CrossRef]

2003 (1)

R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond Relat. Mater. 12, 583–589 (2003).
[CrossRef]

2002 (2)

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

2001 (1)

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

1998 (1)

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

1997 (1)

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

1983 (1)

A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
[CrossRef]

1980 (1)

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

1976 (1)

G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976).
[CrossRef]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Campion, A.

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Chang, H. C.

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009).
[CrossRef]

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004).
[CrossRef]

Chang, Y. R.

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

Chen, K.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Chen, K. M.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

Chen, Y. Y.

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

Collins, A. T.

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
[CrossRef]

Cotlet, M.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Dai, L. M.

Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009).
[CrossRef]

Davies, G.

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976).
[CrossRef]

De Schryver, F. C.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Drabenstedt, A.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Dyck, M.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Fang, X.

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

Fann, W.

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Fleury, L.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Fu, C. C.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Gallo, A. R.

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Garguilo, J. M.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Gogotsi, Y.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Gruber, A.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Gruber, D.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
[CrossRef]

Hamer, M. F.

G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976).
[CrossRef]

Harris, C. B.

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Hauert, R.

R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond Relat. Mater. 12, 583–589 (2003).
[CrossRef]

Heintzmann, R.

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

Herten, D. P.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Hofkens, J.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Huang, L. C. L.

L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004).
[CrossRef]

Hui, Y. Y.

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

Jonsson, P.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

Jorge, M. I. B.

A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
[CrossRef]

Kang, M. W.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

Kitson, S. C.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

Kucheyev, S. O.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

Kuo, Y.

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

Lee, H. Y.

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Levin, E. M.

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

Liaugaudas, G.

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

Lim, T. S.

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Lin, P. K.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Mao, J.

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

Mochalin, V.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

Mullen, K.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Muller, C.

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Nemanich, R. J.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Osswald, S.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

Perkins, J.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Plakhotnik, T.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
[CrossRef]

Poizat, J. P.

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Rarity, J. G.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

Ribeill, G. J.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Robota, H. J.

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Sakon, J. J.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Sauer, M.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Schmidt-Rohr, K.

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

Shu, H. L.

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

Smith, B. R.

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
[CrossRef]

Suhling, K.

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

Tapster, P. R.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

Thomaz, M. F.

A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
[CrossRef]

Tietz, C.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Tinnefeld, P.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Tsao, P. H.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Tzeng, Y. K.

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

Vaijayanthimala, V.

V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009).
[CrossRef]

vonBorczyskowski, C.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Vosch, T.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Wei, P. K.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Weil, T.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

Weninger, K. R.

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

Weston, K. D.

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Whitmore, P. M.

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Wrachtrup, J.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Wu, H. Y.

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Xing, Y.

Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009).
[CrossRef]

Yu, S. J.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

Yu, Y. C.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

Yushin, G.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

Anal. Chem. (1)

K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980).
[CrossRef]

Diamond Relat. Mater. (4)

J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009).
[CrossRef]

B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010).
[CrossRef]

R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond Relat. Mater. 12, 583–589 (2003).
[CrossRef]

Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011).
[CrossRef]

J. Am. Chem. Soc. (4)

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[CrossRef]

P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002).
[CrossRef]

X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009).
[CrossRef]

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006).
[CrossRef]

J. Phys. C (1)

A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983).
[CrossRef]

J. Phys.Condens. Matter (1)

G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009).
[CrossRef]

Langmuir (1)

L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004).
[CrossRef]

Nanomedicine (2)

V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009).
[CrossRef]

Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009).
[CrossRef]

Phys. Rev. A (2)

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[CrossRef]

A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007).
[CrossRef]

Proc. R. Soc. A (1)

G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976).
[CrossRef]

Science (1)

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Fluorescence decay curve of a representative FND. The curve was fitted with a four-exponential decay function.

Fig. 2.
Fig. 2.

Numerically constructed decay curves of 15 independent emitters (open circles). The values of fluorescence lifetimes range from 1 to 27 ns and have (a) uniform distribution, (b) distribution with two peaks, and (c) distribution with four peaks, respectively. Insets are the histograms of fluorescence lifetimes of each curve. Each curve was fitted with two-, three-, and four-exponential decay functions. The numbers of (N-V) centers obtained with unmodified method and two-, three-, and four-exponential fitting are denoted by N, N2, N3, and N4, respectively.

Fig. 3.
Fig. 3.

Distribution of photon detection coincidences of the representative FND. The fitting was performed with Eq. (1).

Fig. 4.
Fig. 4.

(a) Histogram of the number of (N-V) centers obtained with unmodified and modified methods; (b) distribution of the fluorescence lifetime of (N-V) centers in 33 single FNDs.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C(T)=c(11Nexp(|T|/τ)),
C0C=R=i=1nj=1,jinpipji=1nj=1npipj.
Q=krτf=32π3ε13/2d3λ3{Im[(ε2ε1)(ε2+ε1)]}1.
I(t)=i=1naiexp(tτi),
I(t)=k=1mAkexp(tτk).
R=inj,jinτiτjinjnτiτj=(n1τ1+n2τ2++nmτm)2n1τ12n2τ22nmτm2(n1τ1+n2τ2++nmτm)2.
R=(A1τ1Amτmnm+A2τ2Amτmnm++nm)2(A1Amnm)(τ1τm)2(A2Amnm)(τ2τm)2nm(A1τ1Amτmnm+A2τ2Amτmnm++nm)2.
nm=A1τ12Amτm2+A1τ22Amτm2++1(A1τ1Amτm+A2τ2Amτm++1)2(1R),
nk=AkAmnm,
n=k=1mnk.

Metrics