Abstract

We analyze frequency-shifting mechanisms in photonic crystal fibers (PCFs). In contrast to the generally used approach of launching pulses in the negative group velocity dispersion (GVD) region of PCFs, we suggest employing a fiber with a higher zero dispersion wavelength that is pumped in the positive GVD region. Results of a numerical optimization reveal that the amplitude stability of the frequency-shifted pulses can be improved by more than 1 order of magnitude and the timing jitter arising from input fluctuations by 2 orders of magnitude by a proper choice of the fiber dispersion. The presented approach and optimization will improve the performance of timing- and amplitude-sensitive applications, such as nonlinear microscopy and spectroscopy or optical synchronization for optical parametric chirped pulse amplification significantly.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [CrossRef]
  2. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 µm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
    [CrossRef]
  3. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
    [CrossRef]
  4. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  6. J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
    [CrossRef]
  7. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011).
    [CrossRef]
  8. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  9. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, “Soliton-based pump–seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550–6557 (2005).
    [CrossRef]
  10. S. Hädrich, S. Demmler, J. Rothhardt, C. Jocher, J. Limpert, and A. Tünnermann, “High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification,” Opt. Lett. 36, 313–315 (2011).
    [CrossRef]
  11. J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, “High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system,” Opt. Express 18, 12719–12726 (2010).
    [CrossRef]
  12. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
    [CrossRef]
  13. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  14. www.fiberdesk.com .
  15. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009).
    [CrossRef]
  16. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
    [CrossRef]
  17. D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990).
    [CrossRef]

2011 (2)

2010 (2)

2009 (2)

2008 (1)

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

2006 (1)

2005 (2)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, “Soliton-based pump–seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550–6557 (2005).
[CrossRef]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

1992 (1)

J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef]

1990 (1)

D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990).
[CrossRef]

1986 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Andresen, E. R.

Baltuška, A.

Birkedal, V.

Blow, K. J.

J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef]

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

de Sterke, C. M.

Dekker, S. A.

Demmler, S.

Dudley, J. M.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Düsterer, S.

Eggleton, B. J.

Feldhaus, J.

Fuji, T.

Genda, Y.

Gris-Sánchez, I.

Hädrich, S.

Heidt, A. M.

Herrmann, D.

Holzwarth, R.

Ishii, N.

Itoh, K.

Jocher, C.

Judge, A. C.

Keiding, S. R.

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Knight, J. C.

Köhler, S.

Krausz, F.

Krebs, M.

Lee, J.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Limpert, J.

Liu, X.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Lucek, J. K.

J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef]

Metzger, T.

Mitschke, F. M.

Mollenauer, L. F.

Nishizawa, N.

Ohta, T.

Pant, R.

Pervak, V.

Rossbach, J.

Rothhardt, J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Schlarb, H.

Schmid, K.

Seise, E.

Sumimura, K.

Tautz, R.

Tavella, F.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Teisset, C.

Thøgersen, J.

Tünnermann, A.

van Howe, J.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Veisz, L.

Willner, A.

Wood, D.

D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990).
[CrossRef]

Xu, C.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Zheltikov, A.

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

J. Lightwave Technol. (2)

D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990).
[CrossRef]

A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (1)

J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

www.fiberdesk.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Spectrum at the output of a 0.13 m long NL-750 fiber measured (red dots) and calculated (black line). (b) The spectral evolution is shown along the fiber length (simulated).

Fig. 2.
Fig. 2.

(a) Spectrum at the output of a 1 m long NL-975 fiber measured (red dots) and calculated (black line). (b) The spectral evolution is shown along the fiber length (simulated).

Fig. 3.
Fig. 3.

Energy in the ytterbium-gain region versus input pulse energy for the NL-750 fiber and 20 fs, sech2-shaped input pulses at 800 nm central wavelength. The insets show the corresponding spectra for three different pulse energies normalized to the same peak value. The red shaded areas mark the ytterbium-gain bandwidth.

Fig. 4.
Fig. 4.

Energy in the ytterbium-gain region versus input pulse energy for the NL-975 fiber and 20 fs, sech2-shaped input pulses at 800 nm central wavelength. The insets show the corresponding spectra for three different pulse energies normalized to the same peak value. The red shaded areas mark the ytterbium-gain bandwidth.

Fig. 5.
Fig. 5.

Results of numerical simulations for varying ZDW. (a) Required input pulse energy (black), resulting shifted pulse energy EYb (gray) versus fiber ZDW and achieved conversion efficiency (red). (b) Relative energy stability of the shifted pulse energy (black) and timing jitter, assuming 1% input energy fluctuation.

Tables (1)

Tables Icon

Table 1. Comparison of the Important Parameters for Frequency Shift in 20 cm Long NL-750 and NL-975 Fiber When Launching 800 nm, 20 fs sech2 Pulse

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N2=γP0T02|β2|,

Metrics