Abstract

A four-layer waveguide structure comprising a dielectric substrate, a metal layer, a left-handed material (LHM) as a guiding layer, and a cladding is investigated as a metal-clad waveguide sensor. Fresnel reflection coefficients are used to study the resonance dips at which the reflectance minimizes. Our calculations show that the proposed structure has a preference over the surface-plasmon resonance structure since it gives a much sharper reflectance dip and can achieve considerable sensitivity improvement. The effects of the LHM permittivity, permeability, and thickness on the reflectance curves is studied.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment

E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver
Opt. Express 18(24) 24412-24422 (2010)

Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha
Opt. Express 17(26) 23511-23521 (2009)

Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film

Rajneesh K. Verma and Banshi D. Gupta
J. Opt. Soc. Am. A 27(4) 846-851 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription