Abstract

We present a comparison between the well-known spectral optical coherence tomography (SOCT) technology and the fast-Fourier-transform-based (FFT-based) impulse-response reconstruction method (FIRRM), which we developed—both in the transmission configuration. It is shown that, since the transmission configuration requires relatively long interferometers, the SOCT measurements are less stable than those of the FIRRM, as seen in the impulse-response reconstruction of the two methods. The FIRRM results show much better agreement with theoretical predictions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).
  2. B. B. Das, K. M. Yoo, and R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  3. F. Liu, K. M. Yoo, and R. R. Alfano, “Transmitted photon intensity through biological tissues within various time windows,” Opt. Lett. 19, 740–742 (1994).
  4. K. M. Yoo, Q. Xing, and R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef]
  5. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  6. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer, 2008).
  7. T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
    [CrossRef]
  8. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1, 736–745 (2010).
    [CrossRef]
  9. E. Regar, P. W. Serruys, and T. G. van Leeuwen, Optical Coherence Tomography in Cardiovascular Research (Taylor & Francis, 2007).
  10. N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
    [CrossRef]
  11. E. Granot, S. Sternklar, and Y. Ben-Aderet, “Efficient impulse response reconstruction from the amplitude spectrum,” J. Opt. Soc. Am. B 27, 354–357 (2010).
    [CrossRef]
  12. Y. Ben-Aderet, E. Granot, S. Sternklar, T. Tal, Natan, and S. K., “Optical imaging of hidden objects behind clothing,” Appl. Opt. 49, 3926–3929 (2010).
    [CrossRef]
  13. E. Granot and S. Sternklar, “Efficient phase spectrum reconstruction with the discrete multiply subtractive anchoring algorithm,” J. Opt. Soc. Am. B 28, 792–795 (2011).
    [CrossRef]
  14. H. A. Kramers, Estratto dagli Atti del Congresso Internazionale di Fisici Como (Nicolo Zonichello, 1927).
  15. R. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926).
    [CrossRef]
  16. A. Yarin, Introduction to Optical Electronics, 2nd ed. (Holt McDougal, 1977).
  17. E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, “200 femtosecond impulse response of a Fabry–Perot etalon with the spectral ballistic imaging technique,” Appl. Phys. B 82, 359–362 (2006).
    [CrossRef]

2011 (2)

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
[CrossRef]

E. Granot and S. Sternklar, “Efficient phase spectrum reconstruction with the discrete multiply subtractive anchoring algorithm,” J. Opt. Soc. Am. B 28, 792–795 (2011).
[CrossRef]

2010 (4)

2006 (1)

E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, “200 femtosecond impulse response of a Fabry–Perot etalon with the spectral ballistic imaging technique,” Appl. Phys. B 82, 359–362 (2006).
[CrossRef]

1994 (1)

1993 (1)

1991 (1)

1926 (1)

Alfano, R. R.

Arnon, S.

N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).

Ben-Aderet, Y.

Blaunstein, N.

N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).

Brezinski, M. E.

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

Choi, E. H.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Das, B. B.

Gambichler, T.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
[CrossRef]

Granot, E.

Hong, S.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Itzhaq, M. H.

E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, “200 femtosecond impulse response of a Fabry–Perot etalon with the spectral ballistic imaging technique,” Appl. Phys. B 82, 359–362 (2006).
[CrossRef]

Jaedicke, V.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
[CrossRef]

K., S.

Kim, C. Y.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Kim, N. R.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Kopeika, N.

N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).

Kramers, H. A.

H. A. Kramers, Estratto dagli Atti del Congresso Internazionale di Fisici Como (Nicolo Zonichello, 1927).

Kronig, R.

Lee, E. S.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Lee, J.

Liu, F.

Natan,

Regar, E.

E. Regar, P. W. Serruys, and T. G. van Leeuwen, Optical Coherence Tomography in Cardiovascular Research (Taylor & Francis, 2007).

Robles, F. E.

Schermann, D.

E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, “200 femtosecond impulse response of a Fabry–Perot etalon with the spectral ballistic imaging technique,” Appl. Phys. B 82, 359–362 (2006).
[CrossRef]

Seong, G. J.

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Serruys, P. W.

E. Regar, P. W. Serruys, and T. G. van Leeuwen, Optical Coherence Tomography in Cardiovascular Research (Taylor & Francis, 2007).

Sharma, S.

Sternklar, S.

Tal, T.

Terras, S.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
[CrossRef]

van Leeuwen, T. G.

E. Regar, P. W. Serruys, and T. G. van Leeuwen, Optical Coherence Tomography in Cardiovascular Research (Taylor & Francis, 2007).

Wax, A.

Xing, Q.

Yarin, A.

A. Yarin, Introduction to Optical Electronics, 2nd ed. (Holt McDougal, 1977).

Yoo, K. M.

Zhu, Y.

Zilberman, A.

N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).

Appl. Opt. (1)

Appl. Phys. B (1)

E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, “200 femtosecond impulse response of a Fabry–Perot etalon with the spectral ballistic imaging technique,” Appl. Phys. B 82, 359–362 (2006).
[CrossRef]

Arch. Dermatol. Res. (1)

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res. 303, 457–473 (2011), and references therein.
[CrossRef]

Arch. Ophthalmol. (1)

N. R. Kim, E. S. Lee, G. J. Seong, E. H. Choi, S. Hong, and C. Y. Kim, “Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma,” Arch. Ophthalmol. 128, 1121–1128 (2010), and references therein.
[CrossRef]

Biomed. Opt. Express (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Other (6)

N. Blaunstein, S. Arnon, A. Zilberman, and N. Kopeika, Applied Aspects of Optical Communication and LIDAR, 1st ed.(Auerbach, 2009).

H. A. Kramers, Estratto dagli Atti del Congresso Internazionale di Fisici Como (Nicolo Zonichello, 1927).

A. Yarin, Introduction to Optical Electronics, 2nd ed. (Holt McDougal, 1977).

E. Regar, P. W. Serruys, and T. G. van Leeuwen, Optical Coherence Tomography in Cardiovascular Research (Taylor & Francis, 2007).

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Typical free-space SOCT system. BS, beam splitter.

Fig. 2.
Fig. 2.

By collecting only the ballistic (first-arriving) photons in transmission mode, a shadow image is generated since the ballistic photons are blocked by any opaque (absorbing) object.

Fig. 3.
Fig. 3.

SOCT in transmission configuration with two spectrometers.

Fig. 4.
Fig. 4.

SOCT in transmission configuration with a single spectrometer.

Fig. 5.
Fig. 5.

FIRRM in transmission configuration with a single spectrometer and no reference arm.

Fig. 6.
Fig. 6.

The experimental setup. (A) Interference measurement, (B) measurement of the reference arm alone (the sample arm is blocked), (C) measurement of the sample arm alone (the reference arm is disconnected).

Fig. 7.
Fig. 7.

(Top) Entire impulse-response reconstruction, (bottom) corresponding pulses. Solid red curve, the theoretical prediction; dashed blue curve, FIRRM results; dotted–dashed black curve, SOCT results.

Tables (1)

Tables Icon

Table 1. Ratio between the Intensity of the Reconstructed Pulses and the Theory for the Two Methods

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f1[k]=|H[k]+R[k]|2,
f2[k]=|H[k]R[k]|2.
h[n]=IFFT{f1[k]f2[k]}u[k]=4IFFT{Re[H[k]R*[k]]}u[n],
u[n]={1forn=0,N/22forn=1,2,(N/2)10forn=(N/2)+1,N1
h[n]=4IFFT{Re[H[k]R*]}u[n].
F[n]=IFFT{f1[k]}u[n]=IFFT{|R[k]|2}u[n]+IFFT{2Re[H[k]R*[k]]}u[n]+IFFT{|H[k]|2}u[n].
F[n]=IFFT{f1[k]}u[n]=|R|2δ[n]+IFFT{2Re[H[k]R*]}u[n]+IFFT{|H[k]|2}u[n].
F[n]=IFFT{f1[k]}u[n]|R|2δ[n]+IFFT{2Re[H[k]R*]}u[n].
h[n]=IFFT{exp(FFT[IFFT{ln|H[k]|}u[n]])}.
|H(f)|2=IoutIin=(1R1)(1R2)12R1R2cos(δ)+R1R2,
h(t)=m=0(R1R2)m2δ(tm2n0lc).
hm(t)=h(t)*s(t)=m=0(R1R2)m2s(tm2n0lc).
hm[n]=m=0(R1R2)m2δ˜(nmTΔt)=m=0(R1R2)m2δ˜(nmTNΔf),
δ˜[n]sin[πn]sin[πn/N]eiπ(N1)n/N,
|hm[n]|2=m=0(R1R2)mδ˜2(nmTNΔf).
SNRmax=(2TΔf)2.

Metrics