Abstract

We theoretically investigate the slow- and fast-light phenomena caused by the coupling between peptide quantum dot (QD) and DNA molecules with the presence of strong pump light and weak signal light simultaneously. In this QD–DNA system, significant changes of the velocity of signal light can be observed when pump-exciton detuning and signal-exciton detuning are adjusted properly. Slow and fast signal light with little absorption can be obtained by adjusting the pump intensity when the pump field is off-resonant. It can be shown clearly that these phenomena cannot occur without the QD–DNA coupling. The scheme proposed here will lead people to know more about the optical behaviors of the QD–DNA system with the currently popular pump-probe technique.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
    [CrossRef]
  2. A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
    [CrossRef]
  3. P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
    [CrossRef]
  4. K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011).
    [CrossRef]
  5. V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
    [CrossRef]
  6. G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
    [CrossRef]
  7. A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
    [CrossRef]
  8. X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
    [CrossRef]
  9. X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
    [CrossRef]
  10. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
    [CrossRef]
  11. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
    [CrossRef]
  12. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
    [CrossRef]
  13. W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008).
    [CrossRef]
  14. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
    [CrossRef]
  15. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
    [CrossRef]
  16. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012).
    [CrossRef]
  17. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef]
  18. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
    [CrossRef]
  19. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [CrossRef]
  20. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009).
    [CrossRef]
  21. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiationpressure-inducd normal mode splitting in cavity optomechanical system,” Opt. Lett. 35, 339–341 (2010).
    [CrossRef]
  22. L. L. Van Zandt, “Resonant microwave absorption by dissolved DNA,” Phys. Rev. Lett. 57, 2085–2087 (1986).
    [CrossRef]
  23. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert Abstr. Int. 45, 2213–2219 (1984).
  24. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
    [CrossRef]
  25. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
    [CrossRef]
  26. B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
    [CrossRef]
  27. C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000).
    [CrossRef]
  28. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
    [CrossRef]
  29. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
    [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Amsterdam, 2008).
  31. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
    [CrossRef]
  32. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
    [CrossRef]
  33. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
    [CrossRef]
  34. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
    [CrossRef]
  35. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
    [CrossRef]
  36. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
    [CrossRef]
  37. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
    [CrossRef]
  38. D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
    [CrossRef]

2012 (2)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012).
[CrossRef]

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

2011 (5)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011).
[CrossRef]

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

2010 (6)

I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
[CrossRef]

V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
[CrossRef]

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiationpressure-inducd normal mode splitting in cavity optomechanical system,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

2009 (2)

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

2008 (4)

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008).
[CrossRef]

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

2007 (2)

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

2005 (3)

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

2004 (1)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

2003 (1)

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

2002 (1)

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

2001 (1)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[CrossRef]

2000 (1)

C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000).
[CrossRef]

1995 (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

1994 (1)

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
[CrossRef]

1986 (1)

L. L. Van Zandt, “Resonant microwave absorption by dissolved DNA,” Phys. Rev. Lett. 57, 2085–2087 (1986).
[CrossRef]

1985 (2)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

1984 (2)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert Abstr. Int. 45, 2213–2219 (1984).

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

1983 (1)

B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
[CrossRef]

Abell, C.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Adai, B. K.

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

Alivisatos, A. P.

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Amdursky, N.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Archer, L. A.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Arcizet, O.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Banin, U.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Berman, P. R.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Boukany, P. E.

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Amsterdam, 2008).

Bracker, A. S.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Cai, W. B.

W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008).
[CrossRef]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Chen, H. M.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Chen, X. Y.

W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008).
[CrossRef]

Chen, Y. H.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Cherepinsky, V.

V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
[CrossRef]

Chung, L. W. K.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Cicak, K.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Clapp, A. R.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Cui, Y. Y.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Davis, C. C.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

Deleglise, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Dorfman, B. H.

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert Abstr. Int. 45, 2213–2219 (1984).

B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
[CrossRef]

Edwards, G. S.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Finkelstein, I. J.

I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
[CrossRef]

Fischer, A.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Fisher, B.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Fu, A.

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

Gammon, D.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Gao, X. H.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Gardiner, C. W.

C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000).
[CrossRef]

Gavartin, E.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Gazit, E.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Gill, R.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Giovannetti, V.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[CrossRef]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Greene, E. C.

I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
[CrossRef]

Gu, W. W.

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

Hall, E. A.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Hashmi, G.

V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
[CrossRef]

He, W.

Hemminger, O.

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Hong, X.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Hoogland, S.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Jacobs, K.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
[CrossRef]

Jiang, W.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Jung, E. M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Kamiya, K.

K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011).
[CrossRef]

Kelley, S. O.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Kim, E. D.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

Kipperberg, T. J.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Klenerman, D.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Komiyama, M.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Kong, X. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Kuzuya, A.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Larabell, C.

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

Lee, L. J.

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

Lee, P. E.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Levenson, R. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Li, J. J.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiationpressure-inducd normal mode splitting in cavity optomechanical system,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009).
[CrossRef]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Lou, X. W.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Marko, J. F.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Mauro, J. M.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Milburn, G. J.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
[CrossRef]

Mishra, B.

V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
[CrossRef]

Molotskii, M.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Nie, S.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Okada, S.

K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011).
[CrossRef]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Riviere, R.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Rosenman, G.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Saffer, J. D.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

Sakai, Y.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Sargent, E. H.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Schliesser, A.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Selke, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Sham, L. J.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Shi, L. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Shweky, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Siggia, E. D.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Simmonds, R. W.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Sirois, A. J.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Smirl, K.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

Steel, D. G.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Sun, B.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Swicord, M. L.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

Teufel, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Tikhomirov, G.

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Trzoss, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Tsay, M. J.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Van Zandt, L. L.

L. L. Van Zandt, “Resonant microwave absorption by dissolved DNA,” Phys. Rev. Lett. 57, 2085–2087 (1986).
[CrossRef]

B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
[CrossRef]

Visnapuu, M. L.

I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
[CrossRef]

Vitali, D.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[CrossRef]

Walls, D. F.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
[CrossRef]

Wang, L.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Wang, S. Q.

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

Weis, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Weiss, S.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

Willner, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Xu, X. D.

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Xu, Y.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Yamazaki, T.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Ying, L. M.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Yuan, C. L.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Zhou, D. J.

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Zhu, K. D.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiationpressure-inducd normal mode splitting in cavity optomechanical system,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009).
[CrossRef]

Zoller, P.

C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009).
[CrossRef]

Biophys. J. (3)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

Biopolymers (1)

B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
[CrossRef]

Curr. Opin. Neurobiol. (1)

A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005).
[CrossRef]

Dissert Abstr. Int. (1)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert Abstr. Int. 45, 2213–2219 (1984).

J. Am. Chem. Soc. (2)

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

J. Phys. Chem. B (1)

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Langmuir (1)

D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008).
[CrossRef]

Macromolecules (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Nanoscale Res. Lett. (1)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012).
[CrossRef]

Nat. Biotechnol. (1)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[CrossRef]

Nat. Commun. (1)

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011).
[CrossRef]

Nat. Mater. (2)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011).
[CrossRef]

Nat. Protocol (1)

W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008).
[CrossRef]

Nature (3)

I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000).
[CrossRef]

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994).
[CrossRef]

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[CrossRef]

Phys. Rev. B (1)

K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011).
[CrossRef]

Phys. Rev. E (1)

V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
[CrossRef]

L. L. Van Zandt, “Resonant microwave absorption by dissolved DNA,” Phys. Rev. Lett. 57, 2085–2087 (1986).
[CrossRef]

X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008).
[CrossRef]

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984).
[CrossRef]

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Science (2)

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Talanta (1)

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Amsterdam, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics