Abstract

We report up to 75 times enhancement in emission from lithographically produced photonic crystals with postprocessing close-packed colloidal quantum-dot incorporation. In our analysis, we use the emission from a close-packed free-standing film as a reference. After discounting the angular redistribution effect, our analysis shows that the observed enhancement is larger than the combined effects of Purcell enhancement and dielectric enhancement with the microscopic local field. The additional enhancement mechanisms, which are consistent with all our observations, are thought to be spectral diffusion mediated by phonons and local polarization fluctuations that allow off-resonant excitons to emit at the cavity wavelengths.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
    [CrossRef] [PubMed]
  2. J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
    [CrossRef] [PubMed]
  3. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  4. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [CrossRef] [PubMed]
  5. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
    [CrossRef]
  6. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
    [CrossRef]
  7. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon. 1, 215–223 (2007).
    [CrossRef]
  8. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [CrossRef] [PubMed]
  9. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
    [CrossRef]
  10. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
    [CrossRef]
  11. J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.
  12. M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
    [CrossRef] [PubMed]
  13. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
    [CrossRef]
  14. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
    [CrossRef]
  15. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
    [CrossRef] [PubMed]
  16. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
    [CrossRef]
  17. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
    [CrossRef] [PubMed]
  18. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef] [PubMed]
  19. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
    [CrossRef]
  20. I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
    [CrossRef]
  21. M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
    [CrossRef]
  22. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
    [CrossRef]
  23. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
    [CrossRef]
  24. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
    [CrossRef] [PubMed]
  25. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
    [CrossRef]
  26. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
    [CrossRef] [PubMed]
  27. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
    [CrossRef] [PubMed]
  28. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28, 2390–2392 (2003).
    [CrossRef] [PubMed]
  29. Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
    [CrossRef]
  30. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
    [CrossRef]
  31. S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
    [CrossRef] [PubMed]
  32. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
    [CrossRef] [PubMed]
  33. J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
    [CrossRef] [PubMed]
  34. H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
    [CrossRef] [PubMed]
  35. R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
    [CrossRef] [PubMed]
  36. J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
    [CrossRef] [PubMed]
  37. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).
  38. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997).
    [CrossRef]
  39. N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [CrossRef]
  40. J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27, 1253–1255 (2002).
    [CrossRef]
  41. M. E. Crenshaw, “The quantized field in a dielectric and application to the radiative decay of an embedded atom,” Phys. Lett. A 358, 438–442 (2006).
    [CrossRef]
  42. K. Dolgaleva, R. W. Boyd, and P. W. Milonni, “Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles,” J. Opt. Soc. Am. B 24, 516–521(2007).
    [CrossRef]
  43. P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
    [CrossRef] [PubMed]
  44. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
    [CrossRef] [PubMed]
  45. H. A. Lorentz, Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Stechert, 1916).
  46. M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
    [CrossRef] [PubMed]
  47. E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
    [CrossRef]
  48. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
    [CrossRef]
  49. J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
    [CrossRef]
  50. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
    [CrossRef]
  51. J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007).
    [CrossRef]
  52. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006).
    [CrossRef] [PubMed]
  53. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
    [CrossRef]
  54. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
    [CrossRef] [PubMed]
  55. S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
    [CrossRef]
  56. M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
    [CrossRef]
  57. A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992).
    [CrossRef]
  58. G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
    [CrossRef]
  59. S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
    [CrossRef]
  60. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
    [CrossRef] [PubMed]
  61. C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
    [CrossRef]
  62. G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
    [CrossRef]
  63. T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
    [CrossRef] [PubMed]
  64. A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).
  65. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
    [CrossRef]

2010 (5)

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
[CrossRef] [PubMed]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
[CrossRef] [PubMed]

2009 (7)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[CrossRef]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

2008 (10)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

2007 (7)

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
[CrossRef]

K. Dolgaleva, R. W. Boyd, and P. W. Milonni, “Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles,” J. Opt. Soc. Am. B 24, 516–521(2007).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon. 1, 215–223 (2007).
[CrossRef]

2006 (4)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006).
[CrossRef] [PubMed]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

M. E. Crenshaw, “The quantized field in a dielectric and application to the radiative decay of an embedded atom,” Phys. Lett. A 358, 438–442 (2006).
[CrossRef]

2005 (4)

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[CrossRef]

2004 (2)

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28, 2390–2392 (2003).
[CrossRef] [PubMed]

2002 (3)

J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27, 1253–1255 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

2001 (1)

C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
[CrossRef]

2000 (5)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
[CrossRef]

1997 (2)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997).
[CrossRef]

1995 (1)

T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992).
[CrossRef]

1991 (1)

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
[CrossRef]

Abel, K. A.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Agarwal, G. S.

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
[CrossRef]

Aichele, T.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

An, J. M.

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

Andre, R.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

Arakawa, Y.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

Aszmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Ates, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Baek, B.

Barnes, M. D.

Barnes, W. L.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Bayer, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Berman, P. R.

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Besombes, L.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Bhat, R.

Bhattacharya, P.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Bianucci, P.

Bohm, G.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Boroditsky, M.

Bougerol, C.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Bowden, C. M.

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

Boyd, R. W.

Boye, D. M.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Brinker, C. J.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
[CrossRef]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Burrows, P. E.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Califano, M.

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Clark, S. W.

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
[CrossRef]

Coccioli, R.

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
[CrossRef]

Combrie, S.

N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Connor, S. T.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Crenshaw, M. E.

M. E. Crenshaw, “The quantized field in a dielectric and application to the radiative decay of an embedded atom,” Phys. Lett. A 358, 438–442 (2006).
[CrossRef]

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

Cui, Y.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Dal Negro, L.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Daves, R. F.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

De Rossi, A.

N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Dolgaleva, K.

Dorenbos, S. N.

Dunphy, D.

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

Dutta, M.

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Fan, H.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

Fayer, M. D.

A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992).
[CrossRef]

Finlayson, C. E.

C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
[CrossRef]

Finley, J. J.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Forchel, A.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Franceschetti, A.

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

Fujita, M.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
[CrossRef]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Gaffney, K. J.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Gies, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Ginger, D. S.

C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
[CrossRef]

Glauber, R. J.

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Gong, Y.

Gong, Y. Y.

A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).

Goupalov, S. V.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Greenham, N. C.

C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
[CrossRef]

Gupta, S. D.

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
[CrossRef]

Hadfield, R. H.

Harbold, J. M.

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
[CrossRef]

J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007).
[CrossRef]

He, E.

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

Henini, M.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Hennequin, B.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Heo, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Hofbauer, F.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Hofling, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Hwang, J.-K.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Ilic, R.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Ivanov, S. A.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Iwamoto, S.

Jaeckel, F.

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

Jahnke, F.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Ji, M.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kamp, M.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Kaniber, M.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Kheng, K.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Khripin, C.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

Kim, E. D.

A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Klimov, V. I.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Kobayashi, T.

T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
[CrossRef] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Krauss, T. D.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006).
[CrossRef] [PubMed]

Krauss, T. F.

Krenner, H. J.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Kress, A.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kumagai, N.

Kuramochi, E.

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Lee, Y.-H.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Lewenstein, M.

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Li, R.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Liao, S.

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Loffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

López, G. P.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Lorentz, H. A.

H. A. Lorentz, Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Stechert, 1916).

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[CrossRef]

Luk, T. S.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Majundar, A.

A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).

Makarova, M.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Malliaras, G. G.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Malloy, K. J.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997).
[CrossRef]

Marsiglio, F.

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).

Meldrum, A.

Meyer, R.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Miao, X.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

Michler, P.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Milonni, P. W.

Misewich, J. A.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Mokari, T.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Nam, S. W.

Nishi, Y.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Nishiguchi, K.

Noda, S.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

Nomura, M.

Notomi, M.

Nurmikko, A. V.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[CrossRef]

Ota, Y.

Pang, J.

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

Park, S.

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Patane, A.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Peterson, J. J.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006).
[CrossRef] [PubMed]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Petruska, M. A.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Phillips, J. M.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Pietryga, J. M.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Poizat, J. P.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Qiao, H.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Qu, S.

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

Ramsey, J. M.

Reinelt, N.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Reitzenstein, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Richard, M.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Ryu, H. Y.

Ryu, H.-Y.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Sallen, G.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Sanda, H.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

Schaller, R. D.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Schneider, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Schonfeld, D.

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

Schubert, E. F.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Sekiguchi, T.

T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
[CrossRef] [PubMed]

Shan, J.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon. 1, 215–223 (2007).
[CrossRef]

Sigmon, T.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Sih, V.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Simmons, J. A.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Smith, D. L.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

So, F.

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Solomon, G. S.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

Spencer, J.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

Stein, A. D.

A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992).
[CrossRef]

Stevens, M. J.

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

Stroscio, M.

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Sun, Z.

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

Sunner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Tanabe, T.

Tanaka, Y.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
[CrossRef]

Tatarenko, S.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997).
[CrossRef]

Thomas, N. R.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
[CrossRef]

Topolancik, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Tribu, A.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

Turyanska, L.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Vollmer, F.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Vrijen, R.

Vuckovic, J.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).

Wang, T.-S.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Wang, X.-Y.

Warga, J.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Whitten, W. B.

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).

Wise, F. W.

J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007).
[CrossRef]

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
[CrossRef]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Xiao, M.

Xiong, S.

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

Xu, H.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Xu, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Yablonovitch, E.

Yamamoto, Y.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

Yamanaka, T.

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

Yang, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Yang, K.

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

Yariv, A.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Yerci, S.

Young, J. F.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, J.-Y.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Zhang, X.

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

Zheng, H.

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

Zheng, Q.

T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
[CrossRef] [PubMed]

Zhu, T.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Zunger, A.

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

Zwiller, V.

Appl. Phys. Lett. (7)

I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).
[CrossRef]

IEEE Trans. Electron Devices (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008).
[CrossRef] [PubMed]

J. Chem. Phys. (3)

J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008).
[CrossRef] [PubMed]

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997).
[CrossRef]

A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992).
[CrossRef]

J. Comput. Electron. (1)

S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007).
[CrossRef]

Luminescence (1)

E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010).
[CrossRef]

Nano Lett. (3)

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009).
[CrossRef] [PubMed]

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006).
[CrossRef] [PubMed]

M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Nat. Photon. (3)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon. 1, 215–223 (2007).
[CrossRef]

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010).
[CrossRef]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009).
[CrossRef]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Nature (5)

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003).
[CrossRef] [PubMed]

Nature Phys. (1)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Lett. A (1)

M. E. Crenshaw, “The quantized field in a dielectric and application to the radiative decay of an embedded atom,” Phys. Lett. A 358, 438–442 (2006).
[CrossRef]

Phys. Rev. A (4)

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
[CrossRef]

T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995).
[CrossRef] [PubMed]

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (4)

J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005).
[CrossRef]

Phys. Rev. Lett. (6)

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[CrossRef]

Science (4)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004).
[CrossRef] [PubMed]

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Small (1)

S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010).
[CrossRef] [PubMed]

Other (4)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).

H. A. Lorentz, Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Stechert, 1916).

J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of a two-dimensional silicon membrane photonic-crystal device consisting of two L3 cavities and a waveguide supported with SiO 2 anchors. The top left inset shows the top view of the holes on the silicon membrane. The lower right inset shows the side-wall profile of the holes. (b) Top SEM view of the L3 cavity created by three missing air holes. (c) SEM image of a cavity with polymer film on top. (d) TEM image of a monolayer of PbS in P3HT polymer. Lower left inset shows a free-film hanging by a corner feature of the photonic-crystal sample.

Fig. 2
Fig. 2

Measured photoluminescence (PL) spectrum taken from the same L3 cavity with polarization parallel ( E x ) and perpendicular ( E y ) to the long axis of the cavity. The calculated modal patterns are shown next to resonance peaks. The inset shows the excitation spot size relative to the cavity.

Fig. 3
Fig. 3

Measured angular distribution of photoluminescence from (a) a free-film and (b) a cavity-free patterned region with a monolayer of close-packed QDs. All data are normalized to the value of cos( 24 ° ), which is the smallest angle the apparatus can measure.

Fig. 4
Fig. 4

(a) Schematic drawing depicts the collection geometries of different numerical aperture (NA) objectives. The relative collection efficiency of the PL signals from 20 × and 10 × objectives are normalized to the Lambertian collection efficiency valued 0.42 for 50 × objective. (b) The relative collection efficiency behaviors of the PL from free-film, the anchor region, and the cosine law show minor deviation from the cosine law behavior. The relative collection efficiencies of (c)  E x 1 and (d)  E y 2 resonances using a 10 × objective are much smaller than cosine law behavior, indicating the emission is directed away from normal in agreement with simulation results (insets).

Fig. 5
Fig. 5

Enhanced E x emission from the FP-like resonance of the 1.0 W 1 waveguide (solid curve), free-film (dashed curve) and the Fano profile fit (dashed–dotted curve). Subtracting the peak signal from the background, the integrated signal corrected for the mode area in the peak is 85% of the total spectrally integrated free-film emission to the upper hemisphere. The inset shows the excitation region and the polarization direction.

Fig. 6
Fig. 6

Combined enhancement from dielectric and from different localized field models.

Fig. 7
Fig. 7

Measured enhancement factor of E x 1 , E y 1 , E y 2 , and E y 3 microcavity resonances with respect to the free-film. The enhancement factor is determined by the height of the resonance above the background emission divided by the emission of a free-film at the resonant frequency. The effect of excitation area to the cavity area is not included. Determination of the enhancement factors from higher Q cavities are unreliable due to poor signal-to-noise ratio of the reference signal since a higher resolution grating was required.

Fig. 8
Fig. 8

Intensity dependent yield of E x 1 resonance at 295 K (diamonds) and E y 2 resonance at 105 K (squares), along with the power dependence fit to y = a x b . The fit parameters and quality of fit are shown in the figure.

Tables (2)

Tables Icon

Table 1 Calculated and Measured Wavelengths and Q Factors of Cavity Resonances a

Tables Icon

Table 2 Estimated Enhanced Emission Factor Referenced to Free-Film

Metrics