Abstract

The absorption of visible light by silver nanoparticles in two-dimensional arrays is investigated using a finite difference time domain algorithm. The results of the calculations show that for all shapes considered, spheres and triangular and rectangular prisms, there is reduced absorption when the particles become more densely packed within the array. The effect is seen to be more pronounced for rectangular and triangular prisms. Investigation of the electromagnetic field very close to the tip of the prism shows that the intensity is very sensitive to the separation between the nanoparticles, with the electric field increasing significantly as the spacing between the particles reduces.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  2. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
    [CrossRef]
  3. K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
    [CrossRef]
  4. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
    [CrossRef]
  5. V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
    [CrossRef]
  6. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
    [CrossRef]
  7. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
    [CrossRef]
  8. F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
    [CrossRef]
  9. A. Centeno, B. Ahmed, J. D. Breeze, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35, 76–78 (2009).
    [CrossRef]
  10. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
    [CrossRef] [PubMed]
  11. D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221–1231 (2005).
    [CrossRef] [PubMed]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  13. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1993).
  15. E.D.Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  16. B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
    [CrossRef]
  17. A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
    [CrossRef]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009 (2)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

A. Centeno, B. Ahmed, J. D. Breeze, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35, 76–78 (2009).
[CrossRef]

2008 (3)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
[CrossRef]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

2007 (2)

V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
[CrossRef]

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
[CrossRef]

2005 (1)

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221–1231 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

2000 (1)

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

1985 (1)

Ahmed, B.

Alford, N.

Arsenault, A.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Baker, M. S.

F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1993).

Breeze, J. D.

Calzaferri, G.

V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
[CrossRef]

Catchpole, K. R.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Centeno, A.

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221–1231 (2005).
[CrossRef] [PubMed]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Currao, A.

V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
[CrossRef]

Duyne, R. P. V.

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
[CrossRef]

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221–1231 (2005).
[CrossRef] [PubMed]

Fournier-Bidoz, S.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Gates, Y.

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Goldys, E. M.

F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
[CrossRef]

Hatton, B.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1993).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kitaev, V.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Liao, P. F.

Liu, Y.

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Malynych, S.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

Meier, M.

Miguez, H.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ozin, G. A.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Reddy, V. R.

V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
[CrossRef]

Reehal, H.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Tetreault, N.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Vekris, E.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
[CrossRef]

Wokaun, A.

Wong, S.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Xia, B.

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Xie, F.

F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
[CrossRef]

Yang, S. M.

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Yin, Y.

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Adv. Mater. (1)

B. Xia, Y. Gates, Y. Yin, and Y. Liu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Chem. Mater. (1)

F. Xie, M. S. Baker, and E. M. Goldys, “Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates,” Chem. Mater. 20, 1788–1797 (2008).
[CrossRef]

Chem. Phys. Chem. (1)

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221–1231 (2005).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

J. Mater. Chem. (1)

A. Arsenault, S. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetreault, E. Vekris, S. Wong, S. M. Yang, V. Kitaev, and G. A. Ozin, “Towards the synthetic all-optical computer: science fiction or reality,” J. Mater. Chem. 14, 781–794(2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys.: Conf. Ser. (1)

V. R. Reddy, A. Currao, and G. Calzaferri, “Gold and silver metal nanoparticle-modified AgCl photocatalyst for water oxidation to O2,” J. Phys.: Conf. Ser. 61, 960–965 (2007).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

The Analyst (Cambridge, U.K.) (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” The Analyst (Cambridge, U.K.) 133, 1308–1346 (2008).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1993).

E.D.Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculation of Q sca , Q abs , and Q ext for isolated 60 nm diameter silver particle in air.

Fig. 2
Fig. 2

Diagram showing polarization of the incident electric field and position of the computational surfaces in relation to a spherical particle.

Fig. 3
Fig. 3

Variation of normalized absorption with separation distance for 60 nm diameter spheres in a two-dimensional array.

Fig. 4
Fig. 4

Orientation and separation of (a) rectangular and (b) triangular prism particles in the two-dimensional arrays considered in the FDTD calculations.

Fig. 5
Fig. 5

Normalized absorption for two-dimensional array of triangular prisms with (a) y-polarization, (b) x-polarization, and (c) varying height (y-polarization).

Fig. 6
Fig. 6

Normalized absorption for two-dimensional array of rectangular prisms with (a) y-polarization, (b) x-polarization and varying height, (c) y-polarization, (d) x-polarization.

Fig. 7
Fig. 7

Snapshots of electric field around a triangular prism nanoparticle in a two-dimensional array with (a) x-polarization, (b) y-polarization. The particle measures 60 nm on the sides, 30 nm in height, and separation 40 nm .

Fig. 8
Fig. 8

Snapshots of electric field around a rectangular prism nanoparticle in a two-dimensional array with (a) x-polarization, (b) y-polarization. Length = 60 nm , width = 40 nm , height = 30 nm , and separation 40 nm .

Fig. 9
Fig. 9

Normalized electric field intensity 5 nm from the triangular prism tip for separation of (a)  10 nm and (b)  40 nm . (The height of the prism is 60 nm and the point considered is midway between the top and bottom surfaces of the particle).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q sca = 8 3 x 4 | m 2 1 m 2 + 2 | 2 ,
ϵ ( ω ) = ϵ ω p 2 ω 2 + i γ ω ,
Q abs = 4 x Im { m 2 1 m 2 + 1 } ,
Q ext = Q abs + Q sca .

Metrics